Как найти сторону правильного треугольника

Сторона правильного треугольника

Как найти сторону правильного треугольника

Сторона правильного треугольника — это одна из сторон
треугольника, у которого все стороны и углы равны.

У правильного треугольника имеется три стороны, и три угла.

Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать

Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16

Признаки стороны правильного треугольника

Сторона является правильной в треугольнике, если:

  1. Каждый из углов треугольника равен 60 градусам.
  2. Все стороны треугольника равны.
  3. Все углы треугольника равны.

Кроме этих трех признаков, определить является ли сторона
правильной можно с помощью формул, характерных только
для сторон правильного треугольника.

Видео:Нахождение стороны прямоугольного треугольникаСкачать

Нахождение стороны прямоугольного треугольника

Формулы стороны правильного треугольника

Длину правильной стороны в равностороннем, равноугольном,
правильном треугольнике можно выразить через формулы.

    Сторона правильного треугольника через высоту:

Сторона правильного треугольника через периметр:

Сторона правильного треугольника через радиус вписанной окружности:

Сторона правильного треугольника через радиус описанной окружности:

Сторона правильного треугольника через площадь:

С помощью вышеперечисленных формул можно найти сторону в
равностороннем, равноугольном, правильном треугольниках.

Видео:Как найти сторону равностороннего треугольника #shorts | ЕГЭ 2022 по профильной математике | ЭйджейСкачать

Как найти сторону равностороннего треугольника #shorts | ЕГЭ 2022 по профильной математике | Эйджей

Правильный треугольник. Площадь правильного треугольника

Правильный треугольник — треугольник, у которого все стороны равны. Каждый угол правильного треугольника равен градусов.
Правильный треугольник называют еще равносторонним.

Как найти сторону правильного треугольника

Каждая из высот правильного треугольника является также его медианой и биссектрисой.
Центры вписанной и описанной окружностей правильного треугольника совпадают.

Пусть сторона правильного треугольника равна .

Высота правильного треугольника:
Радиус окружности, вписанной в правильный треугольник: .
Радиус описанной окружности в два раза больше: .
Площадь правильного треугольника: .

Все эти формулы легко доказать. Если вы нацелены на решение задач части — докажите их самостоятельно.

. Сторона правильного треугольника равна . Найдите радиус окружности, вписанной в этот треугольник.

Задача решается в одну строчку. Радиус вписанной окружности .

. Найдите радиус окружности, вписанной в правильный треугольник, высота которого равна .

Как найти сторону правильного треугольника

Сравним формулы для высоты правильного треугольника и радиуса вписанной окружности. Очевидно, радиус вписанной окружности равен высоты.

. Сторона правильного треугольника равна . Найдите радиус окружности, описанной около этого треугольника.

Как найти сторону правильного треугольника

Радиус окружности, описанной вокруг правильного треугольника, равен .

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Чему равна и как найти площадь равностороннего треугольника

Равносторонний треугольник — это самый простой правильный многоугольник из возможных. При нахождении его площади возникают частные варианты его расчета. Важно знать и понимать признаки и свойства этого вида фигур, для более легкого вычисления этого параметра. Все методы, представленные ниже, достаточно просты в применении, и не потребуют глубокого осмысления….

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Признаки и свойства фигуры

Для того чтобы рассчитать его площадь необходимо понимать свойства и признаки, которыми он обладает. Можно выделить следующие основные признаки этой фигуры:

  • Значение величины его углов одинаково во всех случаях и равняется 60 градусам, вне зависимости от размера сторон.
  • Биссектриса, высота и медиана выпущенные из одного угла будут совпадать.
  • Любая сторона равностороннего треугольника равна двум другим.
  • Центр правильного треугольника будет являться центром для вписанной и описанной окружности.
  • Является частным случаем равнобедренного треугольника.

Важно! Если хотя бы один из этих признаков соблюдается, значит, треугольник является равносторонним. Как найти сторону правильного треугольникаРавносторонний треугольник

Дополнительно этот частный случай фигуры обладает следующими свойствами:

  • Средняя линия, которая делит две боковые стороны пополам, равняется половине основания, параллельно которому она располагается.
  • Сумма всех его углов не превышает 180 градусов.
  • Радиус вписанной окружности рассчитывается по следующей формуле r = Как найти сторону правильного треугольника, а описанной согласно выражению R = Как найти сторону правильного треугольника.
  • Радиус описанной окружности в правильном треугольнике в 2 раза больше радиуса вписанной.

Видео:Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Расчет через сторону

Существует множество способов расчета площади этой фигуры. Все они имеют свои преимущества и недостатки. Применяются в зависимости от условий, представленных задаче. Самая популярный способ найти искомое значение для равностороннего треугольника вычисляется через произведение половины сторон и синуса угла между ними, выглядит это следующим образом: Как найти сторону правильного треугольника, где, a и b – стороны, α – угол между ними.

В случае с равносторонним, этот способ упрощается в значительной степени. Для этого нужно обратиться к рассмотренным выше признакам и свойствам. Исходя из того, что все углы этой фигуры равны, и равняются 60 градусам. Синус 60 градусов, согласно таблице Брадиса, равняется Как найти сторону правильного треугольника, преобразовав исходное выражение получаем следующее значение: Как найти сторону правильного треугольника.

Учитывая то, что все стороны этой фигуры равны, то преобразованное выражение даст такой результат: Как найти сторону правильного треугольника.

Данная формула отлично подойдет в случае, если известна величина стороны этой фигуры. В таком виде вычислять данный показатель гораздо легче и быстрее.

Те, кто помнит формула Герона, знают, как найти площадь этой фигуры. В процессе преобразования выражение изменится в представленное выше. Площадь этой фигуры по Герону рассчитывается так: Как найти сторону правильного треугольника, где, a, b, c —стороны, а p — полупериметр ( Как найти сторону правильного треугольника). Преобразовывается данное выражение достаточно просто. Необходимо подставить вместо значения p расчет полупериметра и постепенно начать сокращать выражение. Сумму сторон можно представить в виде суммы трех одинаковых сторон и довести сокращения до конца. Математически это выглядит так:

Как найти сторону правильного треугольника,

Как найти сторону правильного треугольника,

Как найти сторону правильного треугольника,

Как найти сторону правильного треугольника.

Полученная формула площади и представленные ниже функции могут быть использованы только, в случае, если фигура является правильной, в ином случае не будет давать правильный ответ.

Как найти сторону правильного треугольникаВычисление площади треугольника по его стороне

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Расчет по высоте

Найти площадь равностороннего треугольника можно также, если известна его высота и сторона. Половина длины высоты умножается на сторону, выбрана может быть любая высота и сторона, ведь согласно свойствам, они все одинаковые: Как найти сторону правильного треугольника, где a – это длина стороны. Ее легко запомнить, однако, на практике она применяется достаточно редко.

Если в задаче указана информация о том, что треугольник является равносторонним и известна величина высоты. А чему равна длина стороны неизвестно, то можно воспользоваться формулой, позволяющей ее рассчитать. Найти сторону можно разделив двойную величину высоты на корень квадратный из трех, математически выглядит следующим образом: Как найти сторону правильного треугольника. После этого применяется формула площади, где расчеты производятся через сторону, она описана в предыдущем пункте.

Для того чтобы не делать лишних расчетов можно вывести формулу этого показателя сразу же через высоту. Квадрат высоты делится на корень квадратный из трех. Она будет выглядеть так: Как найти сторону правильного треугольника. В этом случае можно не применять формулу равнобедренного треугольника через сторону.

Как найти сторону правильного треугольникаВычисление площади треугольника по его стороне и высоте

Видео:Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

Расчет через окружности

В математике популярен также прием расчета, рассматриваемого в статье, значения через помещение фигуры в окружность или наоборот. Такая окружность называется описанной. Если она находится внутри, то она называется вписанной. Именно в этом разделе возникает большинство вопросов, как найти площадь равностороннего многоугольника с тремя углами.

Описанная окружность обязательно должна проходить через все вершины, вписанная должна проходить через стороны только в одной точке по касательной.

Как найти сторону правильного треугольникаЧертеж равностороннего треугольника, описанного или вписанного в окружность

Если в условии задачи дан радиус вписанной и описанной окружности, то из них также можно составить выражение, так как вместе они дадут суммарную длину высоты. Как рассчитывается площадь при ее помощи, показано выше: h = R + r .

Преобразовав формулу Как найти сторону правильного треугольника, применив расчет высоты h = R + r, можно получить следующее значение: Как найти сторону правильного треугольника. Данную формула можно упростить еще больше, ведь радиус описанной окружности можно выразить через радиус вписанной. Согласно свойствам этих окружностей R = 2r, где r — это радиус вписанной окружности, R — это радиус описанной. Соответственно площадь правильного треугольника будет высчитываться так: Как найти сторону правильного треугольника.

Если же будет дан размер радиуса описанной окружности, то выражение будет выглядеть следующим образом: Как найти сторону правильного треугольника.

Использование этих свойств пригодится для расчета стороны фигуры. Для того чтобы ее найти можно воспользоваться выражением Как найти сторону правильного треугольникадля описанной окружности, и Как найти сторону правильного треугольникадля вписанной.

Учитывая радиус описанной окружности можно найти искомое значение при помощи возведения стороны в куб, после чего результат делится на радиус, увеличенный в 4 раза. Математически его можно записать следующим образом: Как найти сторону правильного треугольника.

Процесс расчета, чему равен показатель площади равностороннего треугольника через любую из предложенных формул не должен вызывать особых затруднений. Для того чтобы успешно справиться с этой задачей не нужно запоминать все указанные способы, достаточно запомнить основные общие формулы расчета, а также свойства и признаки этой фигуры.

Внимание! Для проверки правильности расчетов можно воспользоваться несколькими способами, результаты должны совпасть.

Площадь равностороннего треугольника

Площадь равностороннего треугольника, вписанного в окружность

Применив логическое мышление, расчеты с легкостью преобразовываются в частные случаи, коих гораздо больше. Нецелесообразно забивать голову большим количеством нерелевантной информации, лучше развивать причинно-следственную связь для преобразования выражений.

💥 Видео

Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать

Задание 15 ОГЭ. Медиана равностороннего треугольника

Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрииСкачать

Супер ЖЕСТЬ ➜ Найдите сторону треугольника ➜ Решить без тригонометрии

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Сможешь найти сторону правильного треугольника?Скачать

Сможешь найти сторону правильного треугольника?

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать

НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКА

Высота равностороннего треугольника равна 13√3 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРАСкачать

Высота равностороннего треугольника равна 13√3 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРА

Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Лайфхак нахождения катета в прямоугольном треугольникеСкачать

Лайфхак нахождения катета в прямоугольном треугольнике

Задача найти сторону равностороннего треугольника по медианеСкачать

Задача найти сторону равностороннего треугольника  по медиане

ЕГЭ 6 номер. Нахождение стороны правильного треугольника по радиусу вписанной окружности.Скачать

ЕГЭ 6 номер. Нахождение стороны правильного треугольника по радиусу вписанной окружности.

Геометрия Найдите сторону равностороннего треугольника, высота которого равна hСкачать

Геометрия Найдите сторону равностороннего треугольника, высота которого равна h
Поделиться или сохранить к себе: