Как найти сторону многоугольника описанного около окружности

Как найти сторону многоугольника описанного около окружности

Ключевые слова: многоугольник, правильный многоугольник, сторона, угол, вписанная, описанная окружность

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.

Центром правильного многоугольника называется точка, равноудаленная от всех его вершин и всех его сторон.

Центральным углом правильного многоугольника называется угол, под которым видна сторона из его центра.

Как найти сторону многоугольника описанного около окружности

Как найти сторону многоугольника описанного около окружности
См. также:
Вписанная окружность, Описанная окружность, Выпуклый четырёхугольник, Произвольный выпуклый многоугольник

Содержание
  1. Калькулятор расчета стороны правильного многоугольника через радиусы окружностей
  2. Расчет длины стороны
  3. Правильный многоугольник
  4. Формулы, признаки и свойства правильного многоугольника
  5. Признаки правильного многоугольника
  6. Основные свойства правильного многоугольника
  7. Формулы правильного n-угольника
  8. Формулы длины стороны правильного n-угольника
  9. Формула стороны правильного n-угольника через радиус вписанной окружности
  10. Формула стороны правильного n-угольника через радиус описанной окружности
  11. Формулы радиуса вписанной окружности правильного n-угольника
  12. Формула радиуса вписанной окружности n-угольника через длину стороны
  13. Формула радиуса описанной окружности правильного n-угольника
  14. Формула радиуса описанной окружности n-угольника через длину стороны
  15. Формулы площади правильного n-угольника
  16. Формула площади n-угольника через длину стороны
  17. Формула площади n-угольника через радиус вписанной окружности
  18. Формула площади n-угольника через радиус описанной окружности
  19. Формула периметра правильного многоугольника
  20. Формула периметра правильного n-угольника
  21. Формула определения угла между сторонами правильного многоугольника
  22. Формула угла между сторонами правильного n-угольника
  23. Правильный треугольник
  24. Формулы правильного треугольника
  25. Формула стороны правильного треугольника через радиус вписанной окружности
  26. Формула стороны правильного треугольника через радиус описанной окружности
  27. Формула площади правильного треугольника через длину стороны
  28. Формула площади правильного треугольника через радиус вписанной окружности
  29. Формула площади правильного треугольника через радиус описанной окружности
  30. Углы между сторонами правильного треугольника
  31. Правильный четырехугольник
  32. Формулы правильного четырехугольника
  33. Формула стороны правильного четырехугольника через радиус вписанной окружности
  34. Формула стороны правильного четырехугольника через радиус описанной окружности
  35. Формула радиуса вписанной окружности правильного четырехугольника через длину стороны
  36. Формула радиуса описанной окружности правильного четырехугольника через длину стороны
  37. Формула площади правильного четырехугольника через длину стороны
  38. Формула площади правильного четырехугольника через радиус вписанной окружности
  39. Формула площади правильного четырехугольника через радиус описанной окружности
  40. Углы между сторонами правильного четырехугольника
  41. Правильный шестиугольник
  42. Формулы правильного шестиугольник
  43. Формула стороны правильного шестиугольника через радиус вписанной окружности
  44. Формула стороны правильного шестиугольника через радиус описанной окружности
  45. Формула радиуса вписанной окружности правильного шестиугольника через длину стороны
  46. Формула радиуса описанной окружности правильного шестиугольника через длину стороны
  47. Формула площади правильного шестиугольника через длину стороны
  48. Формула площади правильного шестиугольника через радиус вписанной окружности
  49. Формула площади правильного шестиугольника через радиус описанной окружности
  50. Углы между сторонами правильного шестиугольника
  51. Правильный восьмиугольник
  52. 💥 Видео

Видео:9 класс, 22 урок, Окружность, описанная около правильного многоугольникаСкачать

9 класс, 22 урок, Окружность, описанная около правильного многоугольника

Калькулятор расчета стороны правильного многоугольника через радиусы окружностей

В публикации представлены онлайн-калькуляторы и формулы для расчета длины стороны правильного многоугольника через радиус вписанной или описанной окружности.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Расчет длины стороны

Как найти сторону многоугольника описанного около окружности

Инструкция по использованию: введите радиус вписанной (r) или описанной (R) окружности, укажите количество вершин правильного многоугольника (n), затем нажмите кнопку “Рассчитать”. В результате будет вычислена длина стороны фигуры (a).

Видео:9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать

9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороны

Правильный многоугольник

Видео:Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

Задача 6 №27916 ЕГЭ по математике. Урок 133

Формулы, признаки и свойства правильного многоугольника

Многоугольником называется часть площади, которая ограничена замкнутой ломаной линией, не пересекающей сама себя.

Многоугольники отличаются между собой количеством сторон и углов.

Правильный многоугольник — это многоугольник, у которого все стороны и углы одинаковые.

Как найти сторону многоугольника описанного около окружности

Признаки правильного многоугольника

Многоугольник будет правильным, если выполняется следующее условие: все стороны и углы одинаковы.

a 1 = a 2 = a 3 = … = a n-1 = a n ,

α 1 = α 2 = α 3 = … = α n-1 = α n

где a1 … an — длины сторон правильного многоугольника,
α 1 … α n — внутренние углы между стронами правильного многоугольника.

Основные свойства правильного многоугольника

  1. Все стороны равны: a 1 = a 2 = a 3 = … = a n-1 = a n
  2. Все углы равны: α 1 = α 2 = α 3 = … = α n-1 = α n
  3. Центр вписанной окружности Oв совпадает с центром описанной окружности Oо, что и образуют центр многоугольникаO.
  4. Сумма всех углов n-угольника равна: 180° · n — 2
  5. Сумма всех внешних углов n-угольника равна 360°: β 1 + β 2 + β 3 + … + β n-1 + β n = 360°
  6. Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины: D n = n · n — 3 2
  7. В любой многоугольник можно вписать окружность и описать круг; при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника: S = π 4 · a 2
  8. Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O .

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Формулы правильного n-угольника

Формулы длины стороны правильного n-угольника

Формула стороны правильного n-угольника через радиус вписанной окружности

a = 2 · r · tg 180° n (через градусы),

a = 2 · r · tg π n (через радианы)

Формула стороны правильного n-угольника через радиус описанной окружности

a = 2 · R · sin 180° n (через градусы),

a = 2 · R · sin π n (через радианы)

Формулы радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны

r = a : 2 · tg 180° n (через градусы),

r = a : 2 · tg π n (через радианы)

Формула радиуса описанной окружности правильного n-угольника

Формула радиуса описанной окружности n-угольника через длину стороны

R = a : 2 · sin 180° n (через градусы),

R = a : 2 · sin π n (через радианы)

Формулы площади правильного n-угольника

Формула площади n-угольника через длину стороны

Формула площади n-угольника через радиус вписанной окружности

Формула площади n-угольника через радиус описанной окружности

Формула периметра правильного многоугольника

Формула периметра правильного n-угольника

Периметр правильного n-угольника равен произведению длины одной стороны правильного n-угольника на количество его сторон.

Формула определения угла между сторонами правильного многоугольника

Формула угла между сторонами правильного n-угольника

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

Правильный треугольник

Правильный треугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°.

Как найти сторону многоугольника описанного около окружности

Формулы правильного треугольника

Формула стороны правильного треугольника через радиус вписанной окружности

Сторона правильного треугольника равна удвоенному произведению радиуса вписанной окружности на корень из трёх.

Формула стороны правильного треугольника через радиус описанной окружности

Сторона правильного треугольника равна произведению радиуса описанной окружности на корень из трёх.

Формула площади правильного треугольника через длину стороны

Формула площади правильного треугольника через радиус вписанной окружности

Формула площади правильного треугольника через радиус описанной окружности

Углы между сторонами правильного треугольника

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Правильный четырехугольник

Правильный четырехугольник — это квадрат.

Как найти сторону многоугольника описанного около окружности

Формулы правильного четырехугольника

Формула стороны правильного четырехугольника через радиус вписанной окружности

Сторона правильного четырехугольника равна двум радиусам вписанной окружности.

Формула стороны правильного четырехугольника через радиус описанной окружности

Сторона правильного четырехугольника равна произведению радиуса описанной окружности на корень из двух.

Формула радиуса вписанной окружности правильного четырехугольника через длину стороны

Радиус вписанной окружности правильного четырехугольника равен половине стороны четырехугольника.

Формула радиуса описанной окружности правильного четырехугольника через длину стороны

Радиус описанной окружности правильного четырехугольника равен половине произведения стороны четырехугольника на корень из двух.

Формула площади правильного четырехугольника через длину стороны

Площадь правильного четырехугольника равна квадрату стороны четырехугольника.

Формула площади правильного четырехугольника через радиус вписанной окружности

Площадь правильного четырехугольника равна четырем радиусам вписанной окружности четырехугольника.

Формула площади правильного четырехугольника через радиус описанной окружности

Площадь правильного четырехугольника равна двум квадратам радиуса описанной окружности.

Углы между сторонами правильного четырехугольника

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Правильный шестиугольник

Правильный шестиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного шестиугольника равны между собой, все углы также равны и составляют 120°.

Как найти сторону многоугольника описанного около окружности

Формулы правильного шестиугольник

Формула стороны правильного шестиугольника через радиус вписанной окружности

Формула стороны правильного шестиугольника через радиус описанной окружности

Длина стороны правильного шестиугольника равна радиусу описанной окружности.

Формула радиуса вписанной окружности правильного шестиугольника через длину стороны

Формула радиуса описанной окружности правильного шестиугольника через длину стороны

Формула площади правильного шестиугольника через длину стороны

Формула площади правильного шестиугольника через радиус вписанной окружности

Формула площади правильного шестиугольника через радиус описанной окружности

Углы между сторонами правильного шестиугольника

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Правильный восьмиугольник

Правильный восьмиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного восьмиугольник равны между собой, все углы также равны и составляют 135°.

💥 Видео

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)Скачать

Геометрия 9 класс (Урок№21 - Правильный многоугольник. Описанная и вписанная окружность.)

110. Окружность, описанная около правильного многоугольникаСкачать

110. Окружность, описанная около правильного многоугольника

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Построить описанную окружность (Задача 1)Скачать

Построить описанную окружность (Задача 1)

ОГЭ 2019. Задание 17. Разбор задач. Геометрия. Окружность.Скачать

ОГЭ 2019.  Задание 17. Разбор задач. Геометрия. Окружность.

Задача 6 №27921 ЕГЭ по математике. Урок 138Скачать

Задача 6 №27921 ЕГЭ по математике. Урок 138

9 класс, 23 урок, Окружность, вписанная в правильный многоугольникСкачать

9 класс, 23 урок, Окружность, вписанная в правильный многоугольник

Задание 24 ОГЭ по математике #7Скачать

Задание 24 ОГЭ по математике #7

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Правильные многоугольники. Урок 11. Геометрия 9 классСкачать

Правильные многоугольники. Урок 11. Геометрия 9 класс
Поделиться или сохранить к себе:
Как найти сторону многоугольника описанного около окружности