СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.
α (радианы) | 0 | π/6 | π/4 | π/3 | π/2 | π | √3π/2 | 2π |
---|---|---|---|---|---|---|---|---|
α (градусы) | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
SIN α (СИНУС) | 0 | 1/2 | √ 2/2 | √3 /2 | 1 | 0 | -1 | 0 |
Угол в градусах | Sin (Синус) |
---|---|
0° | 0 |
1° | 0.0175 |
2° | 0.0349 |
3° | 0.0523 |
4° | 0.0698 |
5° | 0.0872 |
6° | 0.1045 |
7° | 0.1219 |
8° | 0.1392 |
9° | 0.1564 |
10° | 0.1736 |
11° | 0.1908 |
12° | 0.2079 |
13° | 0.225 |
14° | 0.2419 |
15° | 0.2588 |
16° | 0.2756 |
17° | 0.2924 |
18° | 0.309 |
19° | 0.3256 |
20° | 0.342 |
21° | 0.3584 |
22° | 0.3746 |
23° | 0.3907 |
24° | 0.4067 |
25° | 0.4226 |
26° | 0.4384 |
27° | 0.454 |
28° | 0.4695 |
29° | 0.4848 |
30° | 0.5 |
31° | 0.515 |
32° | 0.5299 |
33° | 0.5446 |
34° | 0.5592 |
35° | 0.5736 |
36° | 0.5878 |
37° | 0.6018 |
38° | 0.6157 |
39° | 0.6293 |
40° | 0.6428 |
41° | 0.6561 |
42° | 0.6691 |
43° | 0.682 |
44° | 0.6947 |
45° | 0.7071 |
46° | 0.7193 |
47° | 0.7314 |
48° | 0.7431 |
49° | 0.7547 |
50° | 0.766 |
51° | 0.7771 |
52° | 0.788 |
53° | 0.7986 |
54° | 0.809 |
55° | 0.8192 |
56° | 0.829 |
57° | 0.8387 |
58° | 0.848 |
59° | 0.8572 |
60° | 0.866 |
61° | 0.8746 |
62° | 0.8829 |
63° | 0.891 |
64° | 0.8988 |
65° | 0.9063 |
66° | 0.9135 |
67° | 0.9205 |
68° | 0.9272 |
69° | 0.9336 |
70° | 0.9397 |
71° | 0.9455 |
72° | 0.9511 |
73° | 0.9563 |
74° | 0.9613 |
75° | 0.9659 |
76° | 0.9703 |
77° | 0.9744 |
78° | 0.9781 |
79° | 0.9816 |
80° | 0.9848 |
81° | 0.9877 |
82° | 0.9903 |
83° | 0.9925 |
84° | 0.9945 |
85° | 0.9962 |
86° | 0.9976 |
87° | 0.9986 |
88° | 0.9994 |
89° | 0.9998 |
90° | 1 |
Угол в градусах | Sin (Синус) |
---|---|
91° | 0.9998 |
92° | 0.9994 |
93° | 0.9986 |
94° | 0.9976 |
95° | 0.9962 |
96° | 0.9945 |
97° | 0.9925 |
98° | 0.9903 |
99° | 0.9877 |
100° | 0.9848 |
101° | 0.9816 |
102° | 0.9781 |
103° | 0.9744 |
104° | 0.9703 |
105° | 0.9659 |
106° | 0.9613 |
107° | 0.9563 |
108° | 0.9511 |
109° | 0.9455 |
110° | 0.9397 |
111° | 0.9336 |
112° | 0.9272 |
113° | 0.9205 |
114° | 0.9135 |
115° | 0.9063 |
116° | 0.8988 |
117° | 0.891 |
118° | 0.8829 |
119° | 0.8746 |
120° | 0.866 |
121° | 0.8572 |
122° | 0.848 |
123° | 0.8387 |
124° | 0.829 |
125° | 0.8192 |
126° | 0.809 |
127° | 0.7986 |
128° | 0.788 |
129° | 0.7771 |
130° | 0.766 |
131° | 0.7547 |
132° | 0.7431 |
133° | 0.7314 |
134° | 0.7193 |
135° | 0.7071 |
136° | 0.6947 |
137° | 0.682 |
138° | 0.6691 |
139° | 0.6561 |
140° | 0.6428 |
141° | 0.6293 |
142° | 0.6157 |
143° | 0.6018 |
144° | 0.5878 |
145° | 0.5736 |
146° | 0.5592 |
147° | 0.5446 |
148° | 0.5299 |
149° | 0.515 |
150° | 0.5 |
151° | 0.4848 |
152° | 0.4695 |
153° | 0.454 |
154° | 0.4384 |
155° | 0.4226 |
156° | 0.4067 |
157° | 0.3907 |
158° | 0.3746 |
159° | 0.3584 |
160° | 0.342 |
161° | 0.3256 |
162° | 0.309 |
163° | 0.2924 |
164° | 0.2756 |
165° | 0.2588 |
166° | 0.2419 |
167° | 0.225 |
168° | 0.2079 |
169° | 0.1908 |
170° | 0.1736 |
171° | 0.1564 |
172° | 0.1392 |
173° | 0.1219 |
174° | 0.1045 |
175° | 0.0872 |
176° | 0.0698 |
177° | 0.0523 |
178° | 0.0349 |
179° | 0.0175 |
180° | 0 |
Угол | Sin (Синус) |
---|---|
181° | -0.0175 |
182° | -0.0349 |
183° | -0.0523 |
184° | -0.0698 |
185° | -0.0872 |
186° | -0.1045 |
187° | -0.1219 |
188° | -0.1392 |
189° | -0.1564 |
190° | -0.1736 |
191° | -0.1908 |
192° | -0.2079 |
193° | -0.225 |
194° | -0.2419 |
195° | -0.2588 |
196° | -0.2756 |
197° | -0.2924 |
198° | -0.309 |
199° | -0.3256 |
200° | -0.342 |
201° | -0.3584 |
202° | -0.3746 |
203° | -0.3907 |
204° | -0.4067 |
205° | -0.4226 |
206° | -0.4384 |
207° | -0.454 |
208° | -0.4695 |
209° | -0.4848 |
210° | -0.5 |
211° | -0.515 |
212° | -0.5299 |
213° | -0.5446 |
214° | -0.5592 |
215° | -0.5736 |
216° | -0.5878 |
217° | -0.6018 |
218° | -0.6157 |
219° | -0.6293 |
220° | -0.6428 |
221° | -0.6561 |
222° | -0.6691 |
223° | -0.682 |
224° | -0.6947 |
225° | -0.7071 |
226° | -0.7193 |
227° | -0.7314 |
228° | -0.7431 |
229° | -0.7547 |
230° | -0.766 |
231° | -0.7771 |
232° | -0.788 |
233° | -0.7986 |
234° | -0.809 |
235° | -0.8192 |
236° | -0.829 |
237° | -0.8387 |
238° | -0.848 |
239° | -0.8572 |
240° | -0.866 |
241° | -0.8746 |
242° | -0.8829 |
243° | -0.891 |
244° | -0.8988 |
245° | -0.9063 |
246° | -0.9135 |
247° | -0.9205 |
248° | -0.9272 |
249° | -0.9336 |
250° | -0.9397 |
251° | -0.9455 |
252° | -0.9511 |
253° | -0.9563 |
254° | -0.9613 |
255° | -0.9659 |
256° | -0.9703 |
257° | -0.9744 |
258° | -0.9781 |
259° | -0.9816 |
260° | -0.9848 |
261° | -0.9877 |
262° | -0.9903 |
263° | -0.9925 |
264° | -0.9945 |
265° | -0.9962 |
266° | -0.9976 |
267° | -0.9986 |
268° | -0.9994 |
269° | -0.9998 |
270° | -1 |
Угол | Sin (Синус) |
---|---|
271° | -0.9998 |
272° | -0.9994 |
273° | -0.9986 |
274° | -0.9976 |
275° | -0.9962 |
276° | -0.9945 |
277° | -0.9925 |
278° | -0.9903 |
279° | -0.9877 |
280° | -0.9848 |
281° | -0.9816 |
282° | -0.9781 |
283° | -0.9744 |
284° | -0.9703 |
285° | -0.9659 |
286° | -0.9613 |
287° | -0.9563 |
288° | -0.9511 |
289° | -0.9455 |
290° | -0.9397 |
291° | -0.9336 |
292° | -0.9272 |
293° | -0.9205 |
294° | -0.9135 |
295° | -0.9063 |
296° | -0.8988 |
297° | -0.891 |
298° | -0.8829 |
299° | -0.8746 |
300° | -0.866 |
301° | -0.8572 |
302° | -0.848 |
303° | -0.8387 |
304° | -0.829 |
305° | -0.8192 |
306° | -0.809 |
307° | -0.7986 |
308° | -0.788 |
309° | -0.7771 |
310° | -0.766 |
311° | -0.7547 |
312° | -0.7431 |
313° | -0.7314 |
314° | -0.7193 |
315° | -0.7071 |
316° | -0.6947 |
317° | -0.682 |
318° | -0.6691 |
319° | -0.6561 |
320° | -0.6428 |
321° | -0.6293 |
322° | -0.6157 |
323° | -0.6018 |
324° | -0.5878 |
325° | -0.5736 |
326° | -0.5592 |
327° | -0.5446 |
328° | -0.5299 |
329° | -0.515 |
330° | -0.5 |
331° | -0.4848 |
332° | -0.4695 |
333° | -0.454 |
334° | -0.4384 |
335° | -0.4226 |
336° | -0.4067 |
337° | -0.3907 |
338° | -0.3746 |
339° | -0.3584 |
340° | -0.342 |
341° | -0.3256 |
342° | -0.309 |
343° | -0.2924 |
344° | -0.2756 |
345° | -0.2588 |
346° | -0.2419 |
347° | -0.225 |
348° | -0.2079 |
349° | -0.1908 |
350° | -0.1736 |
351° | -0.1564 |
352° | -0.1392 |
353° | -0.1219 |
354° | -0.1045 |
355° | -0.0872 |
356° | -0.0698 |
357° | -0.0523 |
358° | -0.0349 |
359° | -0.0175 |
360° | 0 |
Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.
Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».
Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.
Чему равен синус 45? …
— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071
- Синус, косинус, тангенс угла 45 градусов (sin 45, cos 45, tg 45)
- ЗНАЧЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ ПРИ α=45°
- Табличные значения: синус 45, косинус 45 и тангенс 45 градусов
- Синус, косинус и тангенс угла π/4 радиан
- Синус угла. Таблица синусов.
- Синус угла через градусы, минуты и секунды
- Синус угла через десятичную запись угла
- Как найти угол зная синус этого угла
- Определение синуса
- Периодичность синуса
- 🎬 Видео
Видео:ЗНАЧЕНИЯ СИНУСА, КОСИНУСА И ТАНГЕНСА 30, 45 И 60 ГРАДУСОВСкачать
Синус, косинус, тангенс угла 45 градусов (sin 45, cos 45, tg 45)
Табличные значения синуса 45, косинуса 45 и тангенса 45 градусов указаны ниже. Далее по тексту следует пояснение метода и правильности вычисления этих значений для произвольного прямоугольного треугольника.
45 градусов — это π/4 радиан. Формулы для значений косинуса, синуса и тангенса пи/4 радиан указаны ниже (хотя они и тождественны).
То есть, например, tg π/4 = tg 45 градусов
Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать
ЗНАЧЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ ПРИ α=45°
Как самостоятельно вычислить значения sin cos tg 45 градусов?
Построим и рассмотрим прямоугольный треугольник АВС у которого угол ∠В = 45°. На основании соотношения его сторон, вычислим значения тригонометрических функций в прямоугольном треугольнике для угла 45 градусов. Поскольку треугольник прямоугольный, то значения функций синуса, косинуса и тангенса будут равны соотношению его соответствующих сторон.
Поскольку значение функций синуса, косинуса и тангенса зависят исключительно от градусной меры угла (или значения, выраженного в радианах), то найденные нами соотношения и будут значениями функции синуса 45, косинуса 45 и тангенса 45 градусов.
Согласно свойствам прямоугольного треугольника, угол С — прямой и равен 90 градусам. Угол B мы изначально построили с градусной мерой 45 градусов. Найдем значение угла А. Так как сумма углов треугольника равна 180 градусам, то
∠А + ∠В + ∠С = 180°
Угол C прямой и равен 90 градусам, угол B мы изначально определили как 45 градусов, таким образом:
∠А = 180° —∠С — ∠В = 180° — 90° — 45° = 45°
Поскольку у данного треугольника два угла равны между собой, то треугольник АВС – прямоугольный, и, одновременно, равнобедренный, в котором оба катета равны между собой: AC = BC.
Допустим, что длина сторон равна некому числу АС = ВС = а. Зная длины катетов, вычислим длину гипотенузы.
По теореме Пифагора: АВ 2 =АС 2 +ВС 2
Заменим длины AC и BC на переменную а, тогда получим:
АВ 2 = а 2 + а 2 = 2а 2 ,
В результате мы выразили длины всех сторон прямоугольного треугольника с углом 45 градусов через переменную а.
Согласно свойств тригонометрических функций в прямоугольном треугольнике соотношение соответствующих сторон треугольника будет равным значению соответствующих функций. Таким образом для угла α = 45 градусов:
sin α = BC / AB (согласно определению синуса для прямоугольного треугольника — это отношение противолежащего катета к гипотенузе, BC — катет, AB — гипотенуза)
cos α = AC / AB (согласно определению косинуса — это отношение прилежащего катета к гипотенузе, AC — катет, AB — гипотенуза)
tg α = BC / AC (аналогично, тангенс для угла α будет равен отношению противолежащего катета к прилежащему)
Вместо обозначений сторон подставим значения их длин через переменную а.
Исходя из этого (см. таблицу значений sin 45, cos 45, tg 45) получаем:
Табличные значения sin 45, cos 45, tg 45 (то есть значение синуса 45, косинуса 45 и тангенса 45 градусов можно вычислить как соотношение соответствующих сторон данного треугольника), подставим вычисленные выше значения длин сторон в формулы и получим результат на картинке ниже.
Видео:Геометрия Синус.Чему равен синус 30,45,60 градусов?Вывод табличных значений.Скачать
Табличные значения: синус 45, косинус 45 и тангенс 45 градусов
Таким образом:
- тангенс 45 градусов равен единице
- синус 45 градусов равен косинусу 45 градусов и равен корню из двух пополам (то же самое, что и единица, деленная на корень из двух)
Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
Синус, косинус и тангенс угла π/4 радиан
- тангенс π/4 ( пи на четыре) равен единице
- синус π/4 ( пи на четыре) градусов равен косинусу π/4 градусов и равен корню из двух пополам
Примечание. В поисковых запросах часто встречается нечто типа «тангенс р/4 или p/4». Это неграмотно. Используйте запрос, например «тангенс пи/4».
Видео:8 класс, 30 урок, Значения синуса, косинуса и тангенса для углов 30◦, 45◦ и 60◦Скачать
Синус угла. Таблица синусов.
Видео:10 класс, 11 урок, Числовая окружностьСкачать
Синус угла через градусы, минуты и секунды
Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Синус угла через десятичную запись угла
Видео:Как быстро находить синусы, косинусы 30, 45, 60 градусов #shorts #математикаСкачать
Как найти угол зная синус этого угла
У синуса есть обратная тригонометрическая функция — arcsin(y)=x
Пример sin(30°) = 1/2; arcsin(1/2) = 30°
Видео:sin 45° cos 45°Скачать
Определение синуса
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.
Видео:ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИСкачать
Периодичность синуса
Функция y = sin(x) периодична, с периодом 2π
🎬 Видео
КОСИНУС НА ПАЛЬЦАХ 🖐 #shorts #егэ #огэ #математика #профильныйегэСкачать
ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Тригонометрическая окружность. Как выучить?Скачать
Как найти значения синуса и косинуса, НЕ запоминая!Скачать
Синус 45 градусовСкачать
Таблица значений тригонометрических функций - как её запомнить!!!Скачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать
Знаки синуса, косинуса, тангенса ЛекцияСкачать
Как найти значения sin, cos, tg, ctg для углов 30° 45° 60°. Тригонометрические функции. Ч.5. 9 классСкачать
Синус, косинус произвольного угла. 9 класс.Скачать