Как найти расстояние от точки пересечения окружностей

Видео:Взаимное расположение окружностей. Точки пересечения окружностейСкачать

Взаимное расположение окружностей. Точки пересечения окружностей

Пересечение двух окружностей

Этот онлайн калькулятор находит точки пересечения двух окружностей, если они существуют

Чтобы использовать калькулятор, введите координаты x и y центра и радиус каждой окружности.

Формулы для расчета приведены под калькулятором.

Как найти расстояние от точки пересечения окружностей

Точки пересечения двух окружностей

Первая окружность

Вторая окружность

Видео:Теорема о числе точек пересечения двух окружностейСкачать

Теорема о числе точек пересечения двух окружностей

Пересечение окружностей

Сама по себе задача нахождения точек пересечения двух окружностей достаточно проста, однако предварительно надо проанализировать если ли вообще точки пересения у данных двух окружностей. Поэтому начать надо с вычисления расстояния d в декартовых координатах между центрами окружностей и сравнения его с радиусами окружностей r1 и r2.

При этом возможно следующие случаи (расстояние между центрами показано красным отрезком):

Как найти расстояние от точки пересечения окружностей

Как найти расстояние от точки пересечения окружностей

Как найти расстояние от точки пересечения окружностей

Как найти расстояние от точки пересечения окружностей

Как найти расстояние от точки пересечения окружностей

Как найти расстояние от точки пересечения окружностей

СлучайОписаниеУсловие
Тривиальный случай — окружности совпадают (это одна и та же окружность)
Окружности не касаются друг другаr1 + r2″ />
Одна окружность содержится внутри другой и не касается ее
Окружности пересекаются в двух точкахНе выполнено ни одно из условий выше
Окружности соприкасаются в одной точкеЧастный случай предыдущего

Если окружности действительно пересекаются, калькулятор использует следующие формулы (в-основном выведенные из теоремы Пифагора), проиллюстрированные рисунком ниже:

Сначала калькулятор находит отрезок a

Чтобы найти точку P3, калькулятор использует следующую формулу (в векторном виде):

И наконец, чтобы найти точки пересечения, калькулятор использует следующие уравнения:
Первая точка:

Обратите внимание на разные знаки перед вторым слагаемым

По теме также можно посмотреть следующие ссылки (на английском языке): Circle-Circle Intersection и Circles and spheres

Видео:✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис ТрушинСкачать

✓ Расстояние от вершины треугольника до точки пересечения высот | Ботай со мной #113 | Борис Трушин

Вычислительная геометрия, или как я стал заниматься олимпиадным программированием. Часть 2

Вступление

Это вторая часть моей статьи посвящена вычислительной геометрии. Думаю, эта статья будет интереснее предыдущей, поскольку задачки будут чуть сложнее.

Начнем с взаимного расположения точки относительно прямой, луча и отрезка.

Задача №1

Определить взаимное расположении точки и прямой: лежит выше прямой, на прямой, под прямой.

Решение
Понятно, что если прямая задана своим уравнением ax + by + c = 0, то тут и решать нечего. Достаточно подставить координаты точки в уравнение прямой и проверить чему оно равно. Если больше нуля, то точка находится в верхней полуплоскости, если равна нулю, то точка находится на прямой и если меньше нуля, то точка находится в нижней полуплоскости. Интереснее случай, когда прямая задана, задана координатами двух точек назовем их P1(x1, y1), P2(x2, y2). В этом случае можно спокойно найти коэффициенты a, b и c и применить предыдущее рассуждение. Но надо сначала подумать, оно нам надо? Конечно, нет! Как я говорил косое произведения — это просто жемчужина вычислительной геометрии. Давайте применим его. Известно, что косое произведение двух векторов положительно, если поворот от первого вектора ко второму идет против часовой стрелки, равно нулю, если векторы коллинеарны и отрицательно, если поворот идет по часовой стрелки. Поэтому нам достаточно посчитать косое произведение векторов P1P2 и P1M и по его знаку сделать вывод.

Как найти расстояние от точки пересечения окружностей

Задача №2

Определить принадлежит ли точка лучу.

Решение
Давайте вспомним, что такое луч: луч — это прямая, ограниченная точкой с одной стороны, а с другой стороны бесконечная. То есть луч задается некоторой начальной точкой и любой точкой лежащей на нем. Пусть точка P1(x1, y1) — начало луча, а P2(x2, y2) — любая точка принадлежащая лучу. Понятно, что если точка принадлежит лучу, то она принадлежит и прямой проходящей через эти точки, но не наоборот. Поэтому принадлежность прямой является необходимым, но не достаточным условием для принадлежности лучу. Поэтому от проверки косового произведения нам никуда не деться. Для достаточного условия нужно вычислить еще и скалярное произведение тех же векторов. Если оно меньше нуля, то точка не принадлежит лучу, если же оно не отрицательно, то точка лежит на луче. Почему так? Давайте посмотрим на рисунок.

Как найти расстояние от точки пересечения окружностей

Итак, для того чтобы точка M(x, y) лежала на луче с начальной точкой P1(x1, y1), где P2(x2, y2) лежит на луче необходимо и достаточно выполнения двух условий:
1. [P1P2, P1M] = 0 – косое произведение (точка лежит на прямой)
2. (P1P2, P1M) ≥ 0 – скалярное произведение (точка лежит на луче)

Задача №3

Определить принадлежит ли точка отрезку.

Решение
Пусть точки P1(x1, y1), P2(x2, y2) концы заданного отрезка. Опять-таки необходимым условием принадлежности точки отрезку является ее принадлежность прямой проходящей через P1, P2. Далее нам нужно определить лежит ли точка между точками P1 и P2, для этого нам на помощь приходит скалярное произведение векторов только на этот раз других: (MP1, MP2). Если оно меньше либо равно нуля, то точка лежит на отрезке, иначе вне отрезка. Почему так? Посмотрим на рисунок.

Как найти расстояние от точки пересечения окружностей

Итак, для того чтобы точка M(x, y) лежала на отрезке с концами P1(x1, y1), P2(x2, y2) необходимо и достаточно выполнения условий:
1. [P1P2, P1M] = 0 – косое произведение (точка лежит на прямой)
2. (MP1,MP2) ≤ 0 – скалярное произведение (точка лежит между P1 и P2)

Задача №4

Взаимное расположение двух точек относительно прямой.

Решение
В этой задаче необходимо определить по одну или по разные стороны относительно прямой находятся две точки.

Как найти расстояние от точки пересечения окружностей

Если точки находятся по разные стороны относительно прямой, то косые произведения имеют разные знаки, а значит их произведение отрицательно. Если же точки лежат по одну сторону относительно прямой, то знаки косых произведений совпадают, значит, их произведение положительно.
Итак:
1. [P1P2, P1M1] * [P1P2, P1M2] 0 – точки лежат по одну сторону.
3. [P1P2, P1M1] * [P1P2, P1M2] = 0 – одна (или две) из точек лежит на прямой.

Кстати, задача об определении наличия точки пересечения у прямой и отрезка решается точно также. Точнее, это и есть эта же задача: отрезок и прямая пересекаются, когда концы отрезка находятся по разные стороны относительно прямой или когда концы отрезка лежат на прямой, то есть необходимо потребовать [P1P2, P1M1] * [P1P2, P1M2] ≤ 0.

Задача №5

Определить пересекаются ли две прямые.

Решение
Будем считать, что прямые не совпадают. Понятно, что прямые не пересекаются, только если они параллельны. Поэтому, найдя условие параллельности, мы можем, определить пересекаются ли прямые.
Допустим прямые заданы своими уравнениями a1x + b1y + c1 = 0 и a2x + b2y + c2 = 0. Тогда условие параллельности прямых заключается в том, что a1b2 — a2b1 = 0.
Если же прямые заданы точками P1(x1, y1), P2(x2, y2), M1(x3, y3), M2(x4, y4), то условие их параллельности заключается в проверки косого произведения векторов P1P2 и M1M2: если оно равно нулю, то прямые параллельны.

Как найти расстояние от точки пересечения окружностей

В общем, то когда прямые заданы своими уравнениями мы тоже проверяем косое произведение векторов (-b1, a1), (-b2, a2) которые называются направляющими векторами.

Задача №6

Определить пересекаются ли два отрезка.

Решение
Вот эта задача мне, действительно, нравится. Отрезки пересекаются тогда, когда, концы каждого отрезка лежат по разные стороны от другого отрезка. Посмотрим на рисунок:

Как найти расстояние от точки пересечения окружностей

Итак, нам нужно проверить, чтобы концы каждого из отрезков лежали по разные стороны относительного концов другого отрезка. Пользуемся косым произведением векторов. Посмотрите на первый рисунок: [P1P2, P1M2] > 0, [P1P2, P1M1] [P1P2, P1M2] * [P1P2, P1M1] 2 + b 2 ).

Задача №8

Расстояние от точки до луча.

Решение
Эта задача отличается от предыдущей тем, что в этом случае может получиться, так что перпендикуляр из точки не падает на луч, а падает на его продолжение.

Как найти расстояние от точки пересечения окружностей

В случае, когда перпендикуляр не падает на луч необходимо найти расстояние от точки до начала луча – это и будет ответом на задачу.

Как же определить падает ли перпендикуляр на луч или нет? Если перпендикуляр не падает на луч, то угол MP1P2 – тупой иначе острый (прямой). Поэтому по знаку скалярного произведения векторов мы можем определить попадает ли перпендикуляр на луч или нет:
1. (P1M, P1P2) 2 .

Теперь рассмотрим случай, когда центр второго круга O2 находится между точками O1 и C. В этом случае получим отрицательное значение величины d2. Использование отрицательного значения d2 приводит к отрицательному значению α. В этом случае необходимо для правильного ответа прибавить к α 2π.
Как найти расстояние от точки пересечения окружностей

Заключение

Ну вот и все. Мы рассмотрели не все, но наиболее часто встречаемые задачи вычислительной геометрии касающиеся взаимного расположения объектов.

Видео:Алгоритмы. Пересечение окружностейСкачать

Алгоритмы. Пересечение окружностей

Расстояние между двумя точками онлайн

С помощю этого онлайн калькулятора можно найти расстояние между точками по известным координатам этих точек. Дается решение с пояснениями. Для нахождения расстояния между точками задайте размерность (2-если задача рассматривается в двухмерном пространстве, 3- если задача рассматривается в трехмерном пространстве), введите координаты точек в ячейки и нажмите на кнопку «Решить». Теоретическую часть смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:"Парадоксальное" среднее расстояние между точками на окружностиСкачать

"Парадоксальное" среднее расстояние между точками на окружности

Расстояние между двумя точками на прямой

Пусть заданы на оси OX точки A с координатой xa и B с координатой xb (Рис.1). Найдем расстояние между точками A и B.

Как найти расстояние от точки пересечения окружностей

Расстояние между точками A и В равно:

( small AB=OB-OA. )(1)

Поскольку расстояние от O до В равна xb, а расстояние от O до A равна xa, получим:

( small AB=x_b-x_a . )(2)
Как найти расстояние от точки пересечения окружностей

На рисунке 2 точки A и В находятся по разные стороны начала координат O. B этом случае рассояние между точками A и B равно:

( small AB=OB+OA. )(3)

Поскольку координата точки A отрицательна а координата точки B положительна, то (2) можно записать так:

( small AB=x_b+|x_a|=x_b-x_a . )(4)

На рисунке 3 точки A и В находятся c левой стороны начала координат O.

Как найти расстояние от точки пересечения окружностей

B этом случае рассояние между точками A и B равно:

( small AB=OA-OB. )(5)

Координаты точек A и B отрицательны. Тогда , то (5) можно записать так:

( small AB=|x_a|-|x_b|=x_b-x_a . )(6)

Из формул (2),(4),(6) следует, что независимо от расположения точек отностительно начала координат рассояние этих точек равна разности координат этих точек, причем от большего значения вычитается меньшее (так как расстояние не может быть отрицательным числом).

Формулы (2),(4),(6) можно записать и так:

( small AB=|x_b-x_a|= |x_a-x_b| . )(7)

Пример 1. на оси Ox заданы точки ( small A(x_a)=A(-4) ) и ( small B(x_b)=B(7) ) . Найти рассояние между этими точками.

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (7):

( small AB=|x_b-x_a|= |7-(-4)|=11 . )(7)

Видео:найти расстояние от точки до точки пересечения окружности с прямой abСкачать

найти расстояние от точки до точки пересечения окружности с прямой ab

Расстояние между двумя точками на плоскости

Пусть на плоскости задана декартова прямоугольная система координат XOY и пусть на плоскости заданы точки A и B, где A имеет координаты (xa,ya), а B имеет координаты (xb,yb) (Рис.4).

Как найти расстояние от точки пересечения окружностей

Учитывая результаты предыдующего параграфа, можем найти расстояние между точками A и M, а также расстояние между точками B и M:

( small AM=x_b-x_a,;; BM=y_b-y_a. )(8)

ABM является прямоугольным треугольником, где AB гипотенуза, а AM и BM катеты. Тогда, исходя из теоремы Пифагора, имеем:

( small AB^2=AM^2+BM^2. )

Тогда, учитывая (8), получим:

( small AB^2=AM^2+BM^2=(x_b-x_a)^2+(y_b-y_a)^2. )
( small AB=sqrt . )(9)

Пример 2. На плоскости, в декартовой прямоугольной системе координат XOY заданы точки ( small A(x_a; y_a)=A(-6;3) ) и ( small B(x_b, y_b)=B(11,-4). ) . Найти рассояние между этими точками.

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (9). Подставляя координаты точек A и B в формулу (9), получим:

Как найти расстояние от точки пересечения окружностейКак найти расстояние от точки пересечения окружностейКак найти расстояние от точки пересечения окружностей,
Как найти расстояние от точки пересечения окружностей.

Ответ: Как найти расстояние от точки пересечения окружностей.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Расстояние между двумя точками в пространстве

Рассмотрим в пространстве, в декартовой прямоугольной системе координат точки A и B, где A имеет координаты (xa,ya,za), а B имеет координаты (xb,yb,zb) (Рис.5).

Как найти расстояние от точки пересечения окружностей

AB является диагональю параллелепипеда, грани которго параллельны координатным плоскостьям и проходят через точки A и B. Но AB является гипотенузой прямоугольного треугольника AMB, а AM и BM являются катетами этого прямоугольного треугольника. Тогда, по теореме Пифагора, имеем:

( small AB^2=AM^2+BM^2. )(10)

Учитывая, что BM равно разности третьих координат точек B и A, получим:

( small BM=z_b-z_a. )

Из предыдующего параграфа следует, что:

( small A’B’^2=(x_b-x_a)^2+(y_b-y_a)^2. )(11)

Но AM=A’B’. Тогда из (10) и (11) следует:

( small AB^2=AM^2+BM^2=A’B’^2+BM^2 ) ( small =(x_b-x_a)^2+(y_b-y_a)^2+(z_b-z_a)^2. )
( small AB= sqrt. )(12)

Пример 3. В пространстве задана декартова прямоугольная система координат XOY и точки ( small A(x_a; y_a ; z_a)=A(5;1;0) ) и ( small B(x_b, y_b, z_b)=B(-8,-4;21). ) Найти рассояние между этими точками.

Решение. Для нахождения расстояния между точками A и B воспользуемся формулой (12). Подставляя координаты точек A и B в формулу (12), получим:

Как найти расстояние от точки пересечения окружностейКак найти расстояние от точки пересечения окружностейКак найти расстояние от точки пересечения окружностей,
Как найти расстояние от точки пересечения окружностей.

Ответ: Как найти расстояние от точки пересечения окружностей.

🔍 Видео

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

10 класс, 19 урок, Расстояние от точки до плоскостиСкачать

10 класс, 19 урок, Расстояние от точки до плоскости

Точка пересечения двух окружностей равноудалена ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Точка пересечения двух окружностей равноудалена ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Определение точки пересечения окружности с прямойСкачать

Определение точки пересечения окружности с прямой

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Определение кратчайшей расстоянии от точки до плоскостиСкачать

Определение кратчайшей расстоянии от точки до плоскости

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Точки пересечения графиков линейных функций. 7 класс.ОбразовательныйСкачать

Точки пересечения графиков линейных функций. 7 класс.Образовательный

Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Пересечение двух окружностейСкачать

Пересечение двух окружностей

Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

Найти точку пересечения прямой и плоскостиСкачать

Найти точку пересечения прямой и плоскости
Поделиться или сохранить к себе: