Как найти радиус описанной окружности тетраэдра

Радиус описанной сферы тетраэдра

Как найти радиус описанной окружности тетраэдра

Видео:Как достроить равногранный тетраэдр и найти радиус описанной сферыСкачать

Как достроить равногранный тетраэдр и найти радиус описанной сферы

Свойства

Зная радиус сферы, описанной около тетраэдра, нужно, во-первых, найти ребро тетраэдра, а также можно узнать сразу радиус сферы, вписанной в тетраэдр, так как он ровно в три раза меньше радиуса описанной окружности. a=(2√6 R_1)/3 r_1=R_1/3

Затем, зная ребро тетраэдра через радиус сферы, описанной около тетраэдра, можно найти его периметр, который представляет собой длину всех ребер тетраэдра, площадь одной грани и площадь полной поверхности тетраэдра, состоящей из четырех граней. P=4√6 R_1 S_1=2√3 〖R_1〗^2 S_(п.п.)=4S_1=8√3 〖R_1〗^2

Помимо радиусов вписанной и описанной около тетраэдра сфер, тетраэдр также обладает радиусами вписанной и описанной окружностей около основания, являющимся одной из граней, которые можно вычислить через радиус описанной сферы. r=(√2 R_1)/3 R=(2√2 R_1)/3

Чтобы найти высоту тетраэдра, нужно умножить радиус описанной вокруг него сферы на четыре и разделить на три, а чтобы вычислить апофему тетраэдра через радиус описанной сферы, необходимо умножить его на корень из двух. h=(4R_1)/3 l=√2 R_1

Объем тетраэдра, зная радиус сферы, описанной около него, равен радиусу в кубе, умноженному на коэффициент восемь корней из трех, деленный на три.. V=(8√3 〖R_1〗^3)/3

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Пирамида, вписанная в сферу

Как найти радиус описанной окружности тетраэдраПирамида, вписанная в сферу. Свойства пирамиды, вписанной в сферу
Как найти радиус описанной окружности тетраэдраРадиус сферы, описанной около правильной n — угольной пирамиды
Как найти радиус описанной окружности тетраэдраОтношение объемов правильной n — угольной пирамиды и шара, ограниченного сферой, описанной около данной пирамиды

Как найти радиус описанной окружности тетраэдра

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Пирамида, вписанная в сферу. Свойства пирамиды, вписанной в сферу

Определение 1. Пирамидой, вписанной в сферу, называют такую пирамиду, все вершины которой лежат на сфере (рис. 1).

Определение 2. Если пирамида вписана в сферу, то сферу называют описанной около пирамиды.

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Теорема 1. Около пирамиды можно описать сферу тогда и только тогда, когда около основания пирамиды можно описать окружность.

Доказательство. Докажем сначала, что, если пирамида вписана в сферу, то около ее основания можно описать окружность. Для этого рассмотрим рисунок 2.

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

На рисунке 2 изображена пирамида SA1A2 . An , вписанная в сферу. Плоскость основания пирамиды пересекает сферу по окружности, в которую вписан многоугольник A1A2 . An – основание пирамиды. Доказано.

Теперь предположим, что около основания A1A2 . An пирамиды SA1A2 . An можно описать окружность. Докажем, что в этом случае около пирамиды SA1A2 . An можно описать сферу. С этой целью обозначим центр окружности, описанной около многоугольника A1A2 . An , символом O’ и проведем прямую p, проходящую через точку O’ и перпендикулярную к плоскости многоугольника A1A2 . An (рис. 3).

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Рассмотрим плоскость β, проходящую через середину отрезка SAn и перпендикулярную к этому отрезку. Если обозначить буквой O точку пересечения плоскости β с прямой p, то точка O и будет центром сферы, описанной около пирамиды SA1A2 . An . Для того, чтобы это доказать, рассмотрим следующий рисунок 4.

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Итак, мы доказали, что точка O находится на одном и том же расстоянии от всех вершин пирамиды SA1A2 . An . Отсюда вытекает, что точка O является центром сферы, описанной около пирамиды SA1A2 . An .

Для завершения доказательства теоремы остается лишь доказать, что плоскость β и прямая p действительно пересекаются. Если предположить, что это не так, то из такого предположения будет следовать, что плоскость β и прямая p параллельны, а, значит, точка S лежит в плоскости A1A2 . An , что противоречит определению пирамиды.

Следствие 1. Около любой правильной пирамиды можно описать сферу.

Следствие 2. Если у пирамиды все боковые ребра равны, то около нее можно описать сферу.

Указание. Основание перпендикуляра, опущенного из вершины такой пирамиды на плоскость ее основания, является центром описанной около основания окружности. Посмотреть доказательство.

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Радиус сферы, описанной около правильной n — угольной пирамиды

Задача 1. Высота правильной n — угольной пирамиды равна h , а длина ребра основания равна a . Найти радиус сферы, описанной около пирамиды.

Решение. Рассмотрим правильную n — угольную пирамиду SA1A2 . An и обозначим буквой O центр описанной около пирамиды сферы, а символом O’ – центр основания пирамиды. Проведем плоскость SO’An (рис. 5).

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Буквой R на рисунке 5 обозначен радиус описанной около пирамиды сферы, а буквой r – радиус описанной около основания пирамиды окружности. По теореме Пифагора для треугольника O’OAn получаем

Как найти радиус описанной окружности тетраэдра(1)

Как найти радиус описанной окружности тетраэдра

из формулы (1) получаем соотношение

Как найти радиус описанной окружности тетраэдра(2)

Ответ. Как найти радиус описанной окружности тетраэдра

Следствие 3. Радиус сферы, описанной около правильной треугольной пирамиды с высотой h и ребром основания a , равен

Как найти радиус описанной окружности тетраэдра

Следствие 4. Радиус сферы, описанной около правильного тетраэдра с ребром a , равен

Как найти радиус описанной окружности тетраэдра

Следствие 5. Радиус сферы, описанной около правильной четырехугольной пирамиды с высотой h и ребром основания a , равен

Как найти радиус описанной окружности тетраэдра

Следствие 6. Радиус сферы, описанной около правильной шестиугольной пирамиды с высотой h и ребром основания a , равен

Как найти радиус описанной окружности тетраэдра

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Отношение объемов правильной n — угольной пирамиды и шара, ограниченного сферой, описанной около данной пирамиды

Задача 2. Около правильной n — угольной пирамиды с высотой h и ребром основания a описана сфера. Найти отношение объемов пирамиды и шара, ограниченного сферой, описанной около данной пирамиды.

Как найти радиус описанной окружности тетраэдра

Воспользовавшись формулой (2), выразим объем шара, ограниченного описанной около пирамиды сферой, через высоту и ребро основания пирамиды:

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Как найти радиус описанной окружности тетраэдра

Ответ. Как найти радиус описанной окружности тетраэдра

Следствие 7. Отношение объема правильной треугольной пирамиды с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной пирамиды, равно

Как найти радиус описанной окружности тетраэдра

Следствие 8. Отношение объема правильного тетраэдр с ребром a к объему шара, ограниченного сферой, описанной около данного тетраэдра, равно

Как найти радиус описанной окружности тетраэдра

Следствие 9. Отношение объема правильной четырехугольной пирамиды с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно

Как найти радиус описанной окружности тетраэдра

Следствие 10. Отношение объема правильной шестиугольной пирамиды с высотой h и ребром основания a к объему шара, ограниченного сферой, описанной около данной призмы, равно

Видео:Радиус описанной окружности трапецииСкачать

Радиус описанной окружности трапеции

Тетраэдр.

Тетраэдр — это частный случай правильной треугольной пирамиды.

Тетраэдр — правильный многогранник (четырёхгранный), имеющий 4 грани, они, в свою очередь, оказываются правильными треугольниками. У тетраэдра 4 вершины, к каждой из них сходится 3 ребра. Общее количество ребер у тетраэдра 6.

Как найти радиус описанной окружности тетраэдраКак найти радиус описанной окружности тетраэдра

Медиана тетраэдра — это отрезок, который соединяет вершину тетраэдра и точку пересечения медиан противоположной грани (медиан равностороннего треугольника, который противолежит вершине).

Бимедиана тетраэдра — это отрезок, который соединяет середины рёбер, что скрещиваются (соединяет середины сторон треугольника, который есть одной из граней тетраэдра).

Высота тетраэдра — это отрезок, который соединяет вершину и точку противоположной грани и перпендикулярен этой грани (т.е. это высота, проведенная от всякой грани, кроме того, совпадает с центром описанной окружности).

Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Свойства тетраэдра.

Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра.

Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему.

Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части.

Видео:Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

Задание 16 ОГЭ по математике. Две окружности одна  описана около квадрата, другая вписана в него.

Типы тетраэдров.

Правильный тетраэдр — это такая правильная треугольная пирамида, каждая из граней которой оказывается равносторонним треугольником.

У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину.

Тетраэдр состоит из 4 граней, 4 вершин и 6 ребер.

Правильный тетраэдр — это один из 5-ти правильных многогранников.

Кроме правильного тетраэдра, заслуживают внимания такие типы тетраэдров:

Равногранный тетраэдр, у него каждая грань представляет собой треугольник. Все грани-треугольники такого тетраэдра равны.

Ортоцентрический тетраэдр, у него каждая высота, опущенная из вершин на противоположную грань, пересекается с остальными в одной точке.

Прямоугольный тетраэдр, у него каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине.

Каркасный тетраэдр — тетраэдр, который таким условиям:

  • есть сфера, которая касается каждого ребра,
  • суммы длин ребер, что скрещиваются равны,
  • суммы двугранных углов при противоположных ребрах равны,
  • окружности, которые вписаны в грани, попарно касаются,
  • каждый четырехугольник, образующийся на развертке тетраэдра, — описанный,
  • перпендикуляры, поставленные к граням из центров окружностей, в них вписанных, пересекаются в одной точке.

Соразмерный тетраэдр, бивысоты у него одинаковы.

Инцентрический тетраэдр, у него отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке.

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Формулы для определения элементов тетраэдра.

Высота тетраэдра:

Как найти радиус описанной окружности тетраэдра

где h — высота тетраэдра, a — ребро тетраэдра.

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

Как найти радиус описанной окружности тетраэдра

где V — объем тетраэдра, a — ребро тетраэдра.

Основные формулы для правильного тетраэдра:

Как найти радиус описанной окружности тетраэдра

Где S — Площадь поверхности правильного тетраэдра;

h — высота, опущенная на основание;

r — радиус вписанной в тетраэдр окружности;

📹 Видео

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.

Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts

Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Вписанная и описанная окружности | Лайфхак для запоминания

Формулы для радиуса окружности #shortsСкачать

Формулы для радиуса окружности #shorts

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Быстро находим радиус описанной сферыСкачать

Быстро находим радиус описанной сферы

Нахождение высоты тетраэдра.Скачать

Нахождение высоты тетраэдра.

✓ Радиус описанной окружности | ЕГЭ. Задание 1. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Радиус описанной окружности | ЕГЭ. Задание 1. Математика. Профильный уровень | Борис Трушин
Поделиться или сохранить к себе: