Как найти радиус окружности в равностороннем треугольнике

Радиус вписанной окружности в равносторонний треугольник онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в любой треугольник окружности, в том числе радиус вписанной в равносторонний треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности выберите тип треугольника, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать

Окружность вписана в равносторонний треугольник, найти радиус

1. Радиус вписанной в равносторонний треугольник окружности, если известна сторона треугольника

Пусть известна сторона a равностороннего треугольника (Рис.1). Выведем формулу вычисления радиуса вписанной в треугольник окружности.

Как найти радиус окружности в равностороннем треугольнике

Радиус вписанной в равнобедренный треугольник окружности через основание a и боковую сторону b вычисляется из следующей формулы:

Как найти радиус окружности в равностороннем треугольнике(1)

Учитывая, что у равностороннего треугольника все стороны равны (( small a=b )), имеем:

( small r=frac cdot sqrt<frac> ) ( small =frac cdot sqrt<frac> ) ( small =frac<large 2 cdot sqrt> )
( small r=frac<large 2 cdot sqrt> )(2)

или, умножив числитель и знаменатель на ( small sqrt ):

( small r=frac<large sqrt> cdot a )(3)

Пример 1. Известна сторона a=17 равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся одним из формул (2) и (3). Подставим значения ( small a=17 ) в (3):

Как найти радиус окружности в равностороннем треугольнике

Ответ: Как найти радиус окружности в равностороннем треугольнике

Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать

№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружности

2. Радиус вписанной в равносторонний треугольник окружности, если известна высота треугольника

Пусть известна высота h равностороннего треугольника (Рис.2). Выведем формулу радиуса вписанной в треугольник окружности.

Как найти радиус окружности в равностороннем треугольнике

Выведем формулу стороны равностороннего треугольника через высоту. Из Теоремы Пифагора имеем:

( small h^2+left( frac right) ^2=a^2.)
( small h^2+ frac =a^2; ; ) ( small fraca^2 =h^2; ; ) ( small a^2=frac.)
( small a= frac<large sqrt> .)(4)

Формула радиуса вписанной в равнобедренный треугольник окружности по основанию и высоте вычисляется из формулы

( small r= large frac<a+sqrt> )(5)

Подставляя (4) в (5), получим:

( small r= large frac<frac<large sqrt>><frac<large sqrt>+sqrt<frac+4h^2>> ) ( small = large frac<frac<large sqrt>><frac<large sqrt>+sqrt<frac>> ) ( small = large frac<frac<large sqrt>><frac<large sqrt>+frac<large sqrt>> ) ( small = large fracsmall =large frac small cdot h )

То есть, радиус вписанной в равносторонний треугольник окружности по высоте вычисляется из формулы:

( small r = large frac small cdot h )(6)

Пример 2. Известна высота ( small h=39 ) равностороннего треугольника. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (6). Подставим значение ( small h=39 ) в (6):

Как найти радиус окружности в равностороннем треугольнике

Ответ: Как найти радиус окружности в равностороннем треугольнике

Видео:Вписанная окружность в равностороннем треугольникеСкачать

Вписанная окружность  в равностороннем треугольнике

3. Радиус вписанной в равносторонний треугольник окружности, если известна площадь треугольника

Пусть известна площадь S равностороннего треугольника (Рис.3). Найдем формулу радиуса вписанной в треугольник окружности.

Как найти радиус окружности в равностороннем треугольнике

Площадь равностороннего треугольника по радиусу вписанной окружности вычисляется из следующей формулы:

( small S= 3cdot sqrtr^2.)
( small r^2= large frac<3 cdot sqrt> ) ( small = large frac <sqrt cdot S > )
( small r= large frac <sqrt[4]> small cdot sqrt )(7)

Пример 3. Известна площадь равностороннего треугольника: ( small S=42 . ) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (7). Подставим значение ( small S=42 ) в (7):

Как найти радиус окружности в равностороннем треугольнике

Ответ: Как найти радиус окружности в равностороннем треугольнике

Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Окружность вписана в равнобедренный треугольник. Найти её радиус.

Радиус описанной окружности равностороннего треугольника

Как найти радиус окружности в равностороннем треугольнике

Как найти радиус окружности в равностороннем треугольнике— сторона треугольника

Как найти радиус окружности в равностороннем треугольнике— высота

Как найти радиус окружности в равностороннем треугольнике— радиус описанной окружности

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Как найти радиус окружности в равностороннем треугольнике

Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Как найти радиус окружности в равностороннем треугольнике

Калькулятор — вычислить, найти радиус описанной окружности равностороннего треугольника по стороне

Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэ

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Видео:Задание 16 ОГЭ по математике. Окружность вписана в равносторонний треугольник.Скачать

Задание 16 ОГЭ по математике. Окружность вписана в  равносторонний  треугольник.

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Как найти радиус окружности в равностороннем треугольнике

Как найти радиус окружности в равностороннем треугольнике

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Как найти радиус окружности в равностороннем треугольнике

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Как найти радиус окружности в равностороннем треугольнике

Как найти радиус окружности в равностороннем треугольнике

где a – сторона треугольника.

Видео:Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математика

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Как найти радиус окружности в равностороннем треугольнике

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Как найти радиус окружности в равностороннем треугольнике

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Как найти радиус окружности в равностороннем треугольнике

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

📸 Видео

Равносторонний треугольник в окружностиСкачать

Равносторонний треугольник в окружности

Радиус окружности описанной около равностороннего треугольникаСкачать

Радиус окружности описанной около равностороннего треугольника

найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Геометрия. Площади. Задача №9. Геометрия в жизни. Задача №10Скачать

Геометрия. Площади. Задача №9. Геометрия в жизни. Задача №10

Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать

Задача 6 №27910 ЕГЭ по математике. Урок 130

Задание 16 ОГЭ по математике. Окружность описана около равностороннего треугольника. Задача 2Скачать

Задание 16 ОГЭ по математике. Окружность описана около  равностороннего   треугольника. Задача 2

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

2065 радиус окружности вписанной в правильный треугольник равен 29 Найдите высоту этого треугольникаСкачать

2065 радиус окружности вписанной в правильный треугольник равен 29 Найдите высоту этого треугольника

Геометрия Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точкахСкачать

Геометрия Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках

Найти радиус описаной окружности в равностороннем треугольникеСкачать

Найти радиус описаной окружности в равностороннем треугольнике

Найти радиус вписанной и описанной окружностей равностороннего треугольника. Разные способы.Скачать

Найти радиус вписанной и описанной окружностей равностороннего треугольника. Разные способы.

ОГЭ ЗАДАНИЕ 16 РАЗДЕЛ ГЕОМЕТРИЯ ПРАВИЛЬНЫЙ ТРЕУГОЛЬНИК И ОКРУЖНОСТЬСкачать

ОГЭ ЗАДАНИЕ 16 РАЗДЕЛ ГЕОМЕТРИЯ ПРАВИЛЬНЫЙ ТРЕУГОЛЬНИК И ОКРУЖНОСТЬ
Поделиться или сохранить к себе: