Как найти радиус окружности по теореме пифагора

Радиус описанной окружности около прямоугольного треугольника онлайн

С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус описанной окружности около прямоугольного треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор
Содержание
  1. 1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника
  2. 2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника
  3. 3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника
  4. 4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника
  5. Как найти радиус окружности
  6. Основные понятия
  7. Формула радиуса окружности
  8. Если известна площадь круга
  9. Если известна длина
  10. Если известен диаметр окружности
  11. Если известна диагональ вписанного прямоугольника
  12. Если известна сторона описанного квадрата
  13. Если известны стороны и площадь вписанного треугольника
  14. Если известна площадь и полупериметр описанного треугольника
  15. Если известна площадь сектора и его центральный угол
  16. Если известна сторона вписанного правильного многоугольника
  17. Скачать онлайн таблицу
  18. Нахождение радиуса описанной вокруг треугольника окружности
  19. Формулы вычисления радиуса описанной окружности
  20. Произвольный треугольник
  21. Прямоугольный треугольник
  22. Равносторонний треугольник
  23. Примеры задач

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника

Пусть известна гипотенуза c прямоугольного треугольника (Рис.1). Найдем радиус описанной окружности около треугольника.

Как найти радиус окружности по теореме пифагора

На странице Радиус окружности описанной около треугольника формула радиуса описанной окружности около треугольника по стороне и противолежащему углу имеет вид:

( small R=frac )

где C − угол противолежащий гипотенузе прямоугольного треугольника. Поскольку угол, противолежащий гипотенузе − прямой, то получим:

( small R=frac=frac, )
( small R=frac. )(1)

Пример 1. Известна гипотенуза ( small с=frac ) прямоугольного треугольника. Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (1).

Подставим значение ( small c=frac ) в (1):

Как найти радиус окружности по теореме пифагора

Ответ: Как найти радиус окружности по теореме пифагора

Видео:Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника

Пусть известны катеты a и b прямоугольного треугольника. Найдем радиус описанной окружности около треугольника (Рис.2).

Как найти радиус окружности по теореме пифагора

Из теоремы Пифагора запишем формулу гипотенузы, выраженная через катеты:

( small c=sqrt. )(2)

Подставляя (2) в (1), получим:

( small R=frac=frac<large sqrt>, )
( small R=frac<large sqrt>. )(3)

Пример 2. Катеты прямоугольного треугольника равны: ( small a=15 , ; b=3.) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (3). Подставим значения ( small a=15 , ; b=3) в (3):

Как найти радиус окружности по теореме пифагора

Ответ: Как найти радиус окружности по теореме пифагора

Видео:Как найти радиус окружности, зная три отрезка | Денис ЖучковСкачать

Как найти радиус окружности, зная три отрезка | Денис Жучков

3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника

Как найти радиус окружности по теореме пифагора

Формула для вычисления радиуса окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника аналогична формуле вычисления радиуса описанной окружности около произвольного треугольника (см. статью на странице Радиус описанной окружности около треугольника онлайн):

Как найти радиус окружности по теореме пифагора(4)

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника

Пусть известны катет a и прилежащий острый угол B прямоугольного треугольника (Рис.4). Найдем радиус описанной окружности около треугольника.

Как найти радиус окружности по теореме пифагора

Так как треугольник прямоугольный, то сумма острых углов треугольника равна 90°:

( small angle A+angle B=90°. )
( small angle A=90°-angle B. )(5)

Подставляя (5) в (4), получим:

( small R=frac=frac) ( small =frac )
( small R=frac. )(6)

Пример 3. Катет прямоугольного треугольника равен: ( small a=15 ,) а прилежащий угол равен ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (6). Подставим значения ( small a=15 , ; angle B=25° ) в (6):

Как найти радиус окружности по теореме пифагора

Ответ: Как найти радиус окружности по теореме пифагора

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Как найти радиус окружности

Как найти радиус окружности по теореме пифагора

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Видео:Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Видео:Теорема Пифагора. 8 КЛАСС | Математика | TutorOnlineСкачать

Теорема Пифагора. 8 КЛАСС | Математика | TutorOnline

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Видео:Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16Скачать

Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Видео:Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать

Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математике

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Видео:Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольник

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Видео:ЕГЭ 2017 | Задание 3 | Найдите радиус окружности ... ✘ Школа ПифагораСкачать

ЕГЭ 2017 | Задание 3 | Найдите радиус окружности ... ✘ Школа Пифагора

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Видео:8 класс, 16 урок, Теорема ПифагораСкачать

8 класс, 16 урок, Теорема Пифагора

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Видео:Теорема ПИФАГОРА ❤️Скачать

Теорема ПИФАГОРА ❤️

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Видео:Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте СегментаСкачать

Как Найти Радиус Сегмента на Потолке. Радиус Окружности По Хорде И Высоте Сегмента

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Видео:Найти радиус за 1 минуту!Скачать

Найти радиус за 1 минуту!

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

Как найти радиус окружности по теореме пифагора

Как найти радиус окружности по теореме пифагора

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Как найти радиус окружности по теореме пифагора

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

Как найти радиус окружности по теореме пифагора

Как найти радиус окружности по теореме пифагора

где a – сторона треугольника.

Видео:Окружность вписана в равносторонний треугольник, найти радиусСкачать

Окружность вписана в равносторонний треугольник, найти радиус

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Как найти радиус окружности по теореме пифагора

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Как найти радиус окружности по теореме пифагора

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Как найти радиус окружности по теореме пифагора

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Поделиться или сохранить к себе: