- Онлайн калькулятор
- Как посчитать длину хорды (градусы)
- Как посчитать длину хорды (радианы)
- Теория
- Формула
- Пример
- Длина хорды равнобедренного треугольника
- Определение хорды
- Свойства хорды к окружности
- Свойства хорды и вписанного угла
- Свойства хорды и центрального угла
- Формулы нахождения хорды
- Решение задач
- Как найти хорду окружности пример
- Как посчитать хорду окружности
- Онлайн калькулятор
- Как посчитать длину хорды (градусы)
- Как посчитать длину хорды (радианы)
- Теория
- Формула
- Пример
- Хорда окружности — определение, свойства, теорема
- Хорда в геометрии
- Свойства отрезка окружности
- Ключевая теорема
- Касательная и секущая
- Решение задач
- Как найти хорду окружности пример
- Определение хорды
- Свойства хорды к окружности
- Свойства хорды и вписанного угла
- Свойства хорды и центрального угла
- Формулы нахождения хорды
- Решение задач
Видео:Как найти длину хорды по радиусу и центральному углу. Геометрия 8-9 классСкачать
Онлайн калькулятор
Хорда круга – отрезок соединяющий две точки, лежащие на окружности.
Чтобы посчитать длину хорды вам необходимо знать, чему равен радиус (r) окружности и угол (α) между двумя радиусами, образующими вместе с хордой равнобедренный треугольник (см. рис.)
Как посчитать длину хорды (градусы)
Чему равна длина хорды окружности если её радиус ,
а
Как посчитать длину хорды (радианы)
Чему равна длина хорды окружности если её радиус ,
а
Видео:ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать
Теория
Чему равна длина хорды (l) окружности если известны её радиус (r) и центральный угол (α), опирающийся на данную хорду?
Формула
Пример
Если радиус круга равен 4 см, а ∠α = 90°, то длина хорды примерно равна 5.65 см.
Видео:ЕГЭ-2022 ||Задание №6 || Найти длину хордыСкачать
Длина хорды равнобедренного треугольника
Учебный курс | Решаем задачи по геометрии |
Видео:Окружность. Длина хорды. Теорема синусов.Скачать Определение хорды Часть кривой, заключенной между двумя точками хорды, называется дугой. Плоская фигура, заключенная между дугой и ее хордой называется сегментом. Хорда, проходящая через центр окружности, называется диаметром окружности. Диаметр окружности — самая длинная хорда окружности. Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать Свойства хорды к окружности
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать Свойства хорды и вписанного углаВидео:Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать Свойства хорды и центрального углаВидео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать Формулы нахождения хорды Длина хорды окружности равна удвоенному радиусу данной окружности, умноженному на синус половины центрального угла. Видео:Задача на нахождение длины хорды окружностиСкачать Решение задачПримечание. Если Вы не нашли решение подходящей задачи, пишите об этом в форуме. Наверняка, курс геометрии будет дополнен.
Решение. Согласно свойству хорд AS x SB = CS x SD, тогда 2х * 3х = 5 * 12 Откуда
Решение. 3,5х + 5,5х + 3х = 360 Откуда градусные величины центральных углов равны: 90 / 2 = 45 Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ; Видео:Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать Как найти хорду окружности примерВидео:Геометрия На основании равнобедренного треугольника, равном 8 см, как на хорде построена окружностьСкачать Как посчитать хорду окружностиВидео:Всё про углы в окружности. Геометрия | МатематикаСкачать Онлайн калькуляторХорда круга – отрезок соединяющий две точки, лежащие на окружности. Чтобы посчитать длину хорды вам необходимо знать, чему равен радиус (r) окружности и угол (α) между двумя радиусами, образующими вместе с хордой равнобедренный треугольник (см. рис.) Как посчитать длину хорды (градусы)Чему равна длина хорды окружности если её радиус , Как посчитать длину хорды (радианы)Чему равна длина хорды окружности если её радиус , Видео:16 заание ОГЭ . 16.3.4. Равнобедренные треугольникиСкачать ТеорияЧему равна длина хорды (l) окружности если известны её радиус (r) и центральный угол (α), опирающийся на данную хорду? ФормулаПримерЕсли радиус круга равен 4 см, а ∠α = 90°, то длина хорды примерно равна 5.65 см. Видео:Теорема о диаметре, перпендикулярном хордеСкачать Хорда окружности — определение, свойства, теоремаВидео:Демо-вариант ОГЭ по математике, задача 10Скачать Хорда в геометрииКаждая хорда имеет свою длину. Ее можно определить с помощью теоремы синусов. То есть длина хорды окружности зависит от радиуса и вписанного угла, опирающегося на данный отрезок. Формула для определения длины выглядит следующим образом: B*A = R*2 * sin α, где R — радиус, AB — это хорда, α — вписанный угол. Также длину можно вычислить через другую формулу, которая выводится из теоремы Пифагора: B*A = R*2 * sin α/2 , где AB — это хорда, α — центральный угол, который опирается на данный отрезок, R — радиус. Если рассматривать хорды в совокупности с дугами, то получаются новые объекты. Например, в кругу можно дополнительно выделить две области: сектор и сегмент. Сектор образуется с помощью двух радиусов и дуги. Для сектора можно вычислить площадь, а если он является частью конуса, то еще и высоту. Сегмент, в свою очередь, это область, состоящая из отрезка и дуги. Для того чтобы проверить правильность своего решения в нахождении длины, можно обратиться к онлайн-калькуляторам в интернете. Они представлены в виде таблицы, в которую нужно вписать только известные параметры, а программа сама выполнит необходимые вычисления.
Свойства отрезка окружностиДля решения геометрических задач необходимо знать свойства хорды окружности. Для нее характерны такие показатели:
Ключевая теоремаИмеется круг с центром в точке O и радиусом R. Для теоремы нужно в круг вписать две прямые, пускай это будут хорды BA и CD, которые пересекаются в точке E. Перед тем как перейти к доказательству, нужно сформулировать определение теоремы. Оно звучит следующим образом: если хорды пересекаются в некоторой точке, которая делит их на отрезки, то произведения длин отрезков первой хорды равно произведению длин отрезков второй хорды. Для наглядности можно записать эту формулу: AE*BE= EC*ED. Теперь можно перейти к доказательству. Проведем отрезки CB и AD. Рассмотрим треугольники CEB и DEA. Известно, что углы CEB и DEA равны как вертикальные углы, DCB и BAD равны за следствием с теоремы про вписанные углы, которые опираются на одну и ту же дугу. Треугольники CEB и DEA подобны (первый признак подобия треугольников). Тогда выходит пропорциональное соотношение BE/ED = EC/EA. Отсюда AE*BE= EC*ED. Помимо взаимодействия с внутренними элементами окружности, для хорды еще существуют свойства при пересечении с секущейся и касательными прямыми. Для этого необходимо рассмотреть понятия касательная и секущая и определить главные закономерности. Касательная — это прямая, которая соприкасается с кругом только в одной точке. И если к ней провести радиус круга, то они будут перпендикулярны. В свою очередь, секущая — это прямая, которая проходит через две точки круга. При взаимодействии этих прямых можно заметить некоторые закономерности. Видео:Демо ОГЭ по математике. Задание 17. Хорда окружности.Скачать Касательная и секущаяСуществует теорема о двух касательных, которые проведены с одной точки. В ней говорится о том, что если есть две прямые OK и ON, которые проведены с точки O, будут равны между собой. Перейдем к доказательству теоремы. Рассмотрим два прямоугольных треугольника AFD и AED. Поскольку катеты DF и DE будут равны как радиусы круга, а AD — общая гипотенуза, то между собой данные треугольники будут равны за признаком равенства треугольников, с чего выходит, что AF = AE.
Предположим у нас есть касательная AB и секущая AD, которые берут начало с одной точки A. Обратим внимание на угол ABC, он спирается на дугу BC, значит, за свойством значение его угла будет равно половине градусной меры дуги, на которую он опирается. За свойством вписанного угла, величина угла BDC также будет равно половине дуги BC. Таким образом, треугольники ABD и ABC будут подобны за признаком подобия треугольников, так как угол A — общий, а угол ABC равен углу BDC. Опираясь на теорию, получаем соотношение: AB/CA = DA/AB, переписав это соотношение в правильную форму, получаем равенство AB 2 = AD*AC, что и требовалось доказать. Как есть теорема про две касательные, так есть и теорема про две секущие. Она так же просто формулируется, как и остальные теоремы. Поэтому рассмотрим доказательство и убедимся, что AB*AC = AE*AD. Проведем две прямые через точку A, получим две секущие AC и AE. Дорисуем две хорды, соединяя точки C и B, B и D. Получим два треугольника ABD И CEA. Обратим внимание на вписанный четырехугольник BDCE. За свойством вписанных четырехугольников узнаем, что значения углов BDE и ECB в сумме будут давать 180 градусов. И сумма значений углов BDA и BDE также равна 180, за свойством смежных углов. Отсюда можно получить два уравнения, из которых будет выведено, что углы ECB и BDA будут равны: BDA + BDE = 180; BDE + ECB = 180. Все это записываем в систему уравнений, отнимаем первое от второго, получаем результат, что ECB = BDA.
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать Решение задачПри решении задач, связанных с окружностью, хорда часто выступает главным элементом, опираясь на который можно найти остальные неизвестные элементы. В каждой второй задаче задаются два параметра, чтобы найти третий неизвестный. В задачах, которые, связанные с кругом, хорда — это обязательный элемент:
Видео:Окружнось. Зависимость длины хорды, от длины дуги.Скачать Как найти хорду окружности пример
Решение. Согласно свойству хорд AS x SB = CS x SD, тогда 2х * 3х = 5 * 12 Откуда
Решение. 3,5х + 5,5х + 3х = 360 Откуда градусные величины центральных углов равны: 90 / 2 = 45 Ответ: Величина углов треугольника равна 45 ; 52,5 ; 82,5 ; |