Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

ГлавнаяШуткиФорум

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

План занятий
Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к
Как найти радиус окружности через уравнение касательной к
Как найти радиус окружности через уравнение касательной к
Как найти радиус окружности через уравнение касательной к
Как найти радиус окружности через уравнение касательной к

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

Окружность. Центр окружности. Радиус окружности.

Уравнение окружности. Уравнение касательной к окружности.

Условие касания прямой и окружности.

Окружностью ( рис.1 ) называется геометрическое место точек, равноудалённых от данной точки О, называемой центром окружности, на расстояние R . Число R > 0 называется радиусом окружности.

Как найти радиус окружности через уравнение касательной к

Уравнение окружности радиуса R с центром в точке О ( х 0 , у 0 ) имеет вид:

Если центр окружности совпадает с началом координат, то уравнение окружности упрощается:

Пусть Р ( х 1 , у 1 ) – точка окружности ( рис.1 ), тогда уравнение касательной к окружности в данной точке имеет вид:

Содержание
  1. Как найти радиус окружности через касательную
  2. Отрезки и прямые, связанные с окружностью. Теорема о бабочке
  3. Отрезки и прямые, связанные с окружностью
  4. Свойства хорд и дуг окружности
  5. Теоремы о длинах хорд, касательных и секущих
  6. Доказательства теорем о длинах хорд, касательных и секущих
  7. Теорема о бабочке
  8. Касательная к окружности
  9. Касательная к окружности, секущая и хорда — в чем разница
  10. Свойства касательной к окружности
  11. Задача
  12. Задача 1
  13. Задача 2
  14. Задача 1
  15. Задача 2
  16. Задача 1
  17. Задача 2
  18. Геометрия. Урок 5. Окружность
  19. Определение окружности
  20. Отрезки в окружности
  21. Дуга в окружности
  22. Углы в окружности
  23. Длина окружности, длина дуги
  24. Площадь круга и его частей
  25. Теорема синусов
  26. Примеры решений заданий из ОГЭ
  27. Радиус — что это такое и как найти радиус окружности
  28. Через длину стороны
  29. Найти радиус круга, зная окружность
  30. Радиус и диаметр
  31. Вычисление радиуса
  32. Если известен диаметр
  33. Если известна длина окружности круга
  34. Если известна площадь круга
  35. Способ расчета радиуса круга:
  36. Через сторону описанного квадрата
  37. Как посчитать радиус зная длину окружности
  38. Формула
  39. Свойства радиуса
  40. По площади сектора и центральному углу
  41. Площадь сегмента
  42. Формулы для площади круга и его частей
  43. Центральный угол, вписанный угол и их свойства
  44. Связанные определения
  45. Примеры задач
  46. Длина дуги
  47. Уравнение окружности
  48. Углы между двумя хордами
  49. Через площадь и полупериметр описанного треугольника
  50. Основные свойства касательных к окружности
  51. Обобщения
  52. Через диагональ вписанного прямоугольника
  53. Площадь круга, онлайн расчет
  54. Вместо заключения

Видео:Математика без Ху!ни. Уравнение касательной.Скачать

Математика без Ху!ни. Уравнение касательной.

Как найти радиус окружности через касательную

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Как найти радиус окружности через уравнение касательной кОтрезки и прямые, связанные с окружностью
Как найти радиус окружности через уравнение касательной кСвойства хорд и дуг окружности
Как найти радиус окружности через уравнение касательной кТеоремы о длинах хорд, касательных и секущих
Как найти радиус окружности через уравнение касательной кДоказательства теорем о длинах хорд, касательных и секущих
Как найти радиус окружности через уравнение касательной кТеорема о бабочке

Как найти радиус окружности через уравнение касательной к

Видео:Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Отрезки и прямые, связанные с окружностью

ФигураРисунокОпределение и свойства
ОкружностьКак найти радиус окружности через уравнение касательной к

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

КругКак найти радиус окружности через уравнение касательной к
РадиусКак найти радиус окружности через уравнение касательной к
ХордаКак найти радиус окружности через уравнение касательной к
ДиаметрКак найти радиус окружности через уравнение касательной к
КасательнаяКак найти радиус окружности через уравнение касательной к
СекущаяКак найти радиус окружности через уравнение касательной к
Окружность
Как найти радиус окружности через уравнение касательной к

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Круг
Как найти радиус окружности через уравнение касательной к

Конечная часть плоскости, ограниченная окружностью

Радиус
Как найти радиус окружности через уравнение касательной к

Отрезок, соединяющий центр окружности с любой точкой окружности

Хорда
Как найти радиус окружности через уравнение касательной к

Отрезок, соединяющий две любые точки окружности

Диаметр
Как найти радиус окружности через уравнение касательной к

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Касательная
Как найти радиус окружности через уравнение касательной к

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Секущая
Как найти радиус окружности через уравнение касательной к

Прямая, пересекающая окружность в двух точках

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Свойства хорд и дуг окружности

ФигураРисунокСвойство
Диаметр, перпендикулярный к хордеКак найти радиус окружности через уравнение касательной кДиаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хордыДиаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хордыКак найти радиус окружности через уравнение касательной кЕсли хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружностиЕсли хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длиныКак найти радиус окружности через уравнение касательной кБольшая из двух хорд расположена ближе к центру окружности.
Равные дугиКак найти радиус окружности через уравнение касательной кУ равных дуг равны и хорды.
Параллельные хордыКак найти радиус окружности через уравнение касательной кДуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде
Как найти радиус окружности через уравнение касательной к

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды
Как найти радиус окружности через уравнение касательной к

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хорды
Как найти радиус окружности через уравнение касательной к

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружности
Как найти радиус окружности через уравнение касательной к

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длины
Как найти радиус окружности через уравнение касательной к

Большая из двух хорд расположена ближе к центру окружности.

Равные дуги
Как найти радиус окружности через уравнение касательной к

У равных дуг равны и хорды.

Параллельные хорды
Как найти радиус окружности через уравнение касательной к

Дуги, заключённые между параллельными хордами, равны.

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Теоремы о длинах хорд, касательных и секущих

ФигураРисунокТеорема
Пересекающиеся хордыКак найти радиус окружности через уравнение касательной к

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Как найти радиус окружности через уравнение касательной к

Касательные, проведённые к окружности из одной точкиКак найти радиус окружности через уравнение касательной к
Касательная и секущая, проведённые к окружности из одной точкиКак найти радиус окружности через уравнение касательной к
Секущие, проведённые из одной точки вне кругаКак найти радиус окружности через уравнение касательной к

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Как найти радиус окружности через уравнение касательной к

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Пересекающиеся хорды
Как найти радиус окружности через уравнение касательной к
Касательные, проведённые к окружности из одной точки
Как найти радиус окружности через уравнение касательной к
Касательная и секущая, проведённые к окружности из одной точки
Как найти радиус окружности через уравнение касательной к
Секущие, проведённые из одной точки вне круга
Как найти радиус окружности через уравнение касательной к
Пересекающиеся хорды
Как найти радиус окружности через уравнение касательной к

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Как найти радиус окружности через уравнение касательной к

Касательные, проведённые к окружности из одной точки

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Секущие, проведённые из одной точки вне круга

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Тогда справедливо равенство

Как найти радиус окружности через уравнение касательной к

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

Как найти радиус окружности через уравнение касательной к

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Как найти радиус окружности через уравнение касательной к

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

Как найти радиус окружности через уравнение касательной к

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Как найти радиус окружности через уравнение касательной к

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Точка B – точка касания. В силу теоремы 2 справедливы равенства

Как найти радиус окружности через уравнение касательной к

откуда и вытекает требуемое утверждение.

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Воспользовавшись теоремой 1, получим

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Воспользовавшись равенствами (1) и (2), получим

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

Как найти радиус окружности через уравнение касательной к

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать

начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.

Касательная к окружности

Как найти радиус окружности через уравнение касательной к

О чем эта статья:

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Как найти радиус окружности через уравнение касательной к

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Как найти радиус окружности через уравнение касательной к

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Как найти радиус окружности через уравнение касательной к

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Как найти радиус окружности через уравнение касательной к

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Как найти радиус окружности через уравнение касательной к

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Как найти радиус окружности через уравнение касательной к

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Как найти радиус окружности через уравнение касательной к

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Как найти радиус окружности через уравнение касательной к

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Как найти радиус окружности через уравнение касательной к

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Как найти радиус окружности через уравнение касательной к

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Как найти радиус окружности через уравнение касательной к

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Как найти радиус окружности через уравнение касательной к

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:Радиус описанной окружностиСкачать

Радиус описанной окружности

Геометрия. Урок 5. Окружность

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Как найти радиус окружности через уравнение касательной к

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение окружности
  • Отрезки в окружности

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Определение окружности

Окружность – геометрическое место точек, равноудаленных от данной точки.

Эта точка называется центром окружности .

Как найти радиус окружности через уравнение касательной к

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Отрезки в окружности

Радиус окружности R – отрезок, соединяющий центр окружности с точкой на окружности.

Хорда a – отрезок, соединяющий две точки на окружности.

Диаметр d – хорда, проходящая через центр окружности, он равен двум радиусам окружности ( d = 2 R ).

O A – радиус, D E – хорда, B C – диаметр.

Теорема 1:
Радиус, перпендикулярный хорде, делит пополам эту хорду и дугу, которую она стягивает.

Касательная к окружности – прямая, имеющая с окружностью одну общую точку.

Из одной точки, лежащей вне окружности, можно провести две касательные к данной окружности.

Теорема 2:
Отрезки касательных, проведенных из одной точки, равны ( A C = B C ).

Теорема 3:
Касательная перпендикулярна радиусу, проведенному к точке касания.

Видео:№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2Скачать

№578. Найдите координаты центра и радиус сферы, заданной уравнением: а) х2+y2+z2 = 49; б) (x — 3)2

Дуга в окружности

Часть окружности, заключенная между двумя точками, называется дугой окружности .

Например, хорда A B стягивает две дуги: ∪ A M B и ∪ A L B .

Теорема 4:
Равные хорды стягивают равные дуги.

Если A B = C D , то ∪ A B = ∪ C D

Видео:КАК НАЙТИ РАДИУС ОКРУЖНОСТИ? КАСАТЕЛЬНАЯ И РАДИУС #shorts #математика #егэ #огэСкачать

КАК НАЙТИ РАДИУС ОКРУЖНОСТИ? КАСАТЕЛЬНАЯ И РАДИУС #shorts #математика #егэ #огэ

Углы в окружности

В окружности существует два типа углов: центральные и вписанные.

Центральный угол – угол, вершина которого лежит в центре окружности.

∠ A O B – центральный.

Центральный угол равен градусной мере дуги, на которую он опирается . ∪ A B = ∠ A O B = α

Если провести диаметр, то он разобьёт окружность на две полуокружности. Градусная мера каждой полуокружности будет равна градусной мере развернутого угла, который на неё опирается.

Градусная мара всей окружности равна 360 ° .

Вписанный угол – угол, вершина которого лежит на окружности, а стороны пересекают окружность.

∠ A C B – вписанный.

Вписанный угол равен половине градусной меры дуги, на которую он опирается . ∠ A C B = ∪ A B 2 = α 2 ∪ A B = 2 ⋅ ∠ A C B = α

Теорема 5:
Вписанные углы, опирающиеся на одну и ту же дугу, равны .

∠ M A N = ∠ M B N = ∠ M C N = ∪ M N 2 = α 2

Теорема 6:
Вписанный угол, опирающийся на полуокружность (на диаметр), равен 90 ° .

∠ M A N = ∠ M B N = ∪ M N 2 = 180 ° 2 = 90 °

Видео:Составить уравнения касательных к окружности (x-1)2+(y+3)2=40, перпендикулярных прямой 3x+y-4=0Скачать

Составить уравнения касательных к окружности (x-1)2+(y+3)2=40, перпендикулярных прямой 3x+y-4=0

Длина окружности, длина дуги

Мы узнали, как измеряется градусная мера дуги окружности (она равна градусной мере центрального угла, который на нее опирается) и всей окружности целиком (градусная мера окружности равна 360 ° ). Теперь поговорим о том, что же такое длина дуги в окружности. Длина дуги – это значение, которое мы бы получили, если бы мерили дугу швейным сантиметром. Рассмотрим две окружности с разными радиусами, в каждой из которых построен центральный угол равный α .

Градусная мера дуги ∪ A B равна градусной мере дуги ∪ C D и равна α .

Но невооуруженным глазом видно, что длины дуг разные. Если градусная мера дуги окружности зависит только от величины центрального угла, который на неё опирается, то длина дуги окружности зависит ещё и от радиуса самой окружноси.

Длина окружности находится по формуле:

Длина дуги окружности , на которую опирается центральный угол α равна:

l α = π R 180 ∘ ⋅ α

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Площадь круга и его частей

Теперь поговорим про площадь круга, площадь сектора и площадь сегмента.

Круг – часть пространства, которая находится внутри окружности.

Иными словами, окружность – это граница, а круг – это то, что внутри.

Примеры окружности в реальной жизни: велосипедное колесо, обруч, кольцо.

Примеры круга в реальной жизни: пицца, крышка от канализационного люка, плоская тарелка.

Площадь круга находится по формуле: S = π R 2

Сектор – это часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Примеры сектора в реальной жизни: кусок пиццы, веер.

Площадь кругового сектора, ограниченного центральным углом α находится по формуле: S α = π R 2 360 ° ⋅ α

Сегмент – это часть круга, ограниченная дугой и хордой, стягивающей эту дугу.

Примеры сегмента в реальной жизни: мармелад “лимонная долька”, лук для стрельбы.

Чтобы найти площадь сегмента, нужно сперва вычислить площадь кругового сектора, который данный сегмент содержит, а потом вычесть площадь треугольника, который образован центральным углом и хордой.

S = π R 2 360 ° ⋅ α − 1 2 R 2 sin α

Видео:ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать

ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямой

Теорема синусов

Если вокруг произвольного треугольника описана окружность, то её радиус можно найти при помощи теоремы синусов:

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R Достаточно знать одну из сторон треугольника и синус угла, который напротив неё лежит. Из этих данных можно найти радиус описанной окружности.

Видео:КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с окружностями.

Видео:9 класс, 6 урок, Уравнение окружностиСкачать

9 класс, 6 урок, Уравнение окружности

Радиус — что это такое и как найти радиус окружности

Через длину стороны

Как найти радиус окружности через уравнение касательной к

Формула для нахождения длины окружности через радиус:

, где r — радиус окружности.

Найти радиус круга, зная окружность

Как найти радиус окружности через уравнение касательной кКак найти радиус окружности через уравнение касательной к
Окружность круга PРезультат

Как найти радиус окружности через уравнение касательной к

Радиус и диаметр

Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

Как найти радиус окружности через уравнение касательной к

Обозначается диаметр также первой буквой своего слова – D или d.

Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

Длина диаметра равна удвоенной длине радиуса.

Как найти радиус окружности через уравнение касательной к

Вычисление радиуса

Радиус можно посчитать разными способами.

Если известен диаметр

Этот способ самый простой. Диаметр равен двум радиусам. Поэтому радиус будет высчитываться по формуле r=d/2.

Если известна длина окружности круга

Также несложно будет узнать радиус, если известна длина окружности круга. Формула для расчета длины окружности C=2πr, в которой C является длиной окружности, π=3,14, а r — это как раз искомый радиус.

Преобразовав данную формулу, получим: r=C/2π. Вообще, число «Пи» в формуле — это постоянное значение, округленное до 3,14. На самом деле «Пи» выглядит так:

Как найти радиус окружности через уравнение касательной к

Означает данное значение отношение длины окружности к диаметру той же окружности.

Если известна площадь круга

Формула площади круга выглядит так: A= π(r²). Эту формулу можно преобразовать в формулу радиуса:

Как найти радиус окружности через уравнение касательной к

В ней A — это площадь круга, число «Пи» мы уже знаем, оно равно округленно 3,14, а r — это и есть искомое значение радиуса.

Как найти радиус круга, все школьники учат на геометрии. Взрослые, конечно, со временем забывают эти формулы. Но, прочитав данную статью, радиус круга может найти каждый: и взрослый, и ребенок.

Способ расчета радиуса круга:

Как найти радиус окружности через уравнение касательной к

Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
Формула радиуса круга: Как найти радиус окружности через уравнение касательной к
где P – длина окружности, pi – число π, равное примерно 3.14

Как найти радиус окружности через уравнение касательной к

Круг (окружность) – геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).
Формула радиуса круга: Как найти радиус окружности через уравнение касательной к
где S – площадь круга, pi – число π, равное примерно 3.14

Через сторону описанного квадрата

Сторона описанного квадрата равна диаметру окружности. А диаметр — повторимся — равен двум радиусам. Поэтому разделите сторону квадрата на два.

Как найти радиус окружности через уравнение касательной к

  • r — искомый радиус окружности.
  • a — сторона описанного квадрата.

Как посчитать радиус зная длину окружности

Чему равен радиус (r) если длина окружности C?

Формула

r = C / , где π ≈ 3.14

Свойства радиуса

В отношении радиуса действуют несколько важных правил:

  1. Радиус составляет половину диаметра. Это мы продемонстрировали только что.
  2. У окружности может быть сколько угодно радиусов. Но все они будут равны по длине между собой.

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Радиус, который перпендикулярен хорде, делит ее на две равные части.

Напомним, хордой называется любой отрезок, который проходит через две точки на поверхности окружности, но не через центр. Этим она принципиально отличается от диаметра.

Как найти радиус окружности через уравнение касательной к

По площади сектора и центральному углу

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

  • Например, если площадь сектора равна 50 см 2 , а центральный угол равен 120 градусов, формула запишется следующим образом: .

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла .

Как найти радиус окружности через уравнение касательной к

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах , получаем

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

В случае, когда величина α выражена в в радианах , получаем

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к

Формулы для площади круга и его частей

Как найти радиус окружности через уравнение касательной к,

где R – радиус круга, D – диаметр круга

Как найти радиус окружности через уравнение касательной к,

если величина угла α выражена в радианах

Как найти радиус окружности через уравнение касательной к,

если величина угла α выражена в градусах

Как найти радиус окружности через уравнение касательной к,

если величина угла α выражена в радианах

Как найти радиус окружности через уравнение касательной к,

если величина угла α выражена в градусах

Числовая характеристикаРисунокФормула
Площадь кругаКак найти радиус окружности через уравнение касательной к
Площадь сектораКак найти радиус окружности через уравнение касательной к
Площадь сегментаКак найти радиус окружности через уравнение касательной к
Площадь круга
Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к,

где R – радиус круга, D – диаметр круга

Площадь сектора Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к,

если величина угла α выражена в радианах

Как найти радиус окружности через уравнение касательной к,

если величина угла α выражена в градусах

Площадь сегмента Как найти радиус окружности через уравнение касательной к

Как найти радиус окружности через уравнение касательной к,

если величина угла α выражена в радианах

Как найти радиус окружности через уравнение касательной к,

если величина угла α выражена в градусах

Центральный угол, вписанный угол и их свойства

Связанные определения

  • Центральный угол в окружности — это угол , образованный двумя радиусами.
  • Радиус кривизны кривой — это радиус окружности, имеющей с этой кривой касание второго порядка.

Примеры задач

Задание 1
Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:
Используем первую формулу (через периметр):
Как найти радиус окружности через уравнение касательной к

Задание 2
Найдите радиус круга, если его площадь составляет 254,34 см 2 .

Решение:
Воспользуемся формулой, выраженной через площадь фигуры:
Как найти радиус окружности через уравнение касательной к

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла .

Как найти радиус окружности через уравнение касательной к

В случае, когда величина α выражена в градусах , справедлива пропорция

Как найти радиус окружности через уравнение касательной к

из которой вытекает равенство:

Как найти радиус окружности через уравнение касательной к

В случае, когда величина α выражена в радианах , справедлива пропорция

Как найти радиус окружности через уравнение касательной к

из которой вытекает равенство:

Как найти радиус окружности через уравнение касательной к

Уравнение окружности

r 2 = ( x – a ) 2 + ( y – b ) 2

3. Параметрическое уравнение окружности с радиусом r и центром в точке с координатами ( a, b ) в декартовой системе координат:

<x = a + r cos t
y = b + r sin t

Углы между двумя хордами

Случай 1: два секущие пересекаются внутри окружности.

Как найти радиус окружности через уравнение касательной к

Когда две секущие пересекаются внутри окружности, величина образованных угла, в два раза меньше суммы величин дуг, на которые они опираются. На рисунке дуга AB и дуга CD равны 60° и 50° тогда углы 1 и 2 равны Случай 2: две секущие пересекаются вне окружности.
Как найти радиус окружности через уравнение касательной к

Иногда секущие пересекаются за пределами окружности. Когда это случается, величина образующихся углов равна половине разности дуг, на которые они опираются.

Через площадь и полупериметр описанного треугольника

Разделите площадь описанного треугольника на его полупериметр.

  • r — искомый радиус окружности.
  • S — площадь треугольника.
  • p — полупериметр треугольника (равен половине от суммы всех сторон).

Основные свойства касательных к окружности

Как найти радиус окружности через уравнение касательной к

3. Если две касательные, с точками соприкосновения B и C, на одной окружности не параллельны, то они пересекаются в точке A, а отрезок между точкой соприкосновения и точкой пересечения одной касательной равен таком же отрезке на другой касательной:

Также, если провести прямую через центр окружности О и точку пересечения A этих касательных, то углы образованный между этой прямой и касательными будут равны:

Обобщения

Радиусом множества , лежащего в метрическом пространстве с метрикой , называется величина . Например, радиус n-размерного гиперкуба со стороной s равен

Через диагональ вписанного прямоугольника

Диагональ прямоугольника является диаметром окружности, в которую он вписан. А диаметр, как мы уже вспомнили, в два раза больше радиуса. Поэтому достаточно разделить диагональ на два.

Как найти радиус окружности через уравнение касательной к

  • R — искомый радиус окружности.
  • d — диагональ вписанного прямоугольника. Напомним, она делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Поэтому, если диагональ неизвестна, её можно найти через соседние стороны прямоугольника с помощью теоремы Пифагора.
  • a, b — стороны вписанного прямоугольника.

Площадь круга, онлайн расчет

Как найти площадь круга по формуле через радиус либо диаметр круга.Площадь круга, онлайн расчет

Вместо заключения

Чтобы еще больше понять, насколько важно понятие РАДИУС, вспомните инструмент, с помощью которого можно начертить окружность. Это циркуль и выглядит он вот так.

Как найти радиус окружности через уравнение касательной к

Пользоваться им просто. Ножка с острым концом ставится в центр будущей окружности. А ножка с грифелем прочерчивает линию. А расстояние, на котором они будут друг от друга, и есть РАДИУС.

Поделиться или сохранить к себе: