- Общие сведения
- Классификация треугольников
- Дополнительные элементы
- Теорема о биссектрисах
- Свойства и соотношения
- Точка пересечения биссектрис
- Определение и свойства биссектрисы угла треугольника
- Определение биссектрисы угла треугольника
- Свойства биссектрисы треугольника
- Свойство 1 (теорема о биссектрисе)
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Пример задачи
- 📺 Видео
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Общие сведения
Треугольник — геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и отрезков, соединяющих их. Точки имеют другое название — вершины. Обозначается треугольник символом Δ, после которого идут 3 латинских буквы. Например, ΔMNO. Допускается использовать и русские литеры, но злоупотреблять этим не стоит.
В высших учебных заведениях преподаватели требуют от студентов международное обозначение. Кроме того, большинство программных продуктов и онлайн-сервисов воспринимают только латинские символы.
Существует определенная классификация Δ, на основании которой доказываются теоремы, выводятся формулы, свойства и решаются задачи. В последнем случае следует правильно производить идентификацию, чтобы избежать ошибок при расчетах.
Классификация треугольников
Необходимо отметить, что Δ различаются между собой по некоторым критериям.
Они бывают нескольких типов:
- Произвольные.
- Прямоугольные.
- Равнобедренные.
- Равносторонние.
- Тупоугольные.
- Остроугольные.
В первом случае стороны фигуры не равны между собой. Чтобы идентифицировать прямоугольный треугольник, необходимо рассмотреть его углы. Если один из них является прямым (равен 90 градусам), такая фигура называется прямоугольной. В третьем виде основным критерием считается наличие двух, равных между собой сторон.
В равностороннем треугольнике все стороны равны между собой. Математики его называют «правильным». Он обладает важным свойством — вокруг него можно описать окружность. Пятый тип определяет наличие тупого угла, градусная мера которого больше 90. Если фигура является остроугольной, это значит, что все 3 его угла меньше 90, т. е. являются острыми.
Один треугольник может относиться к нескольким типам. Например, прямоугольный Δ может быть равнобедренным на основании свойства геометрии: если Δ является равнобедренным, то углы (∠), образованные боковыми сторонами с основанием, равны между собой. В этом случае их градусные меры эквивалентны 45, поскольку сумма ∠ любого Δ составляет 180. Следовательно, 180 — 90 = 2k, где неизвестная величина «к» соответствует углу при основании.
Решая уравнение, можно получить искомое значение угла: k = 45. Исходя из вычислений, треугольник является прямоугольным и равнобедренным.
Дополнительные элементы
У любого Δ существуют определенные дополнительные элементы, необходимые при построении чертежей или схематических рисунков, доказательства теорем и решения задач по геометрии.
К ним относятся:
Биссектриса — отрезок (прямая), проходящий через вершину Δ и делящий угол на 2 равные части. Медиана — единственный отрезок для каждой вершины, соединяющий ее с серединой стороны, на которую он опущен.
Высотой является перпендикуляр, опущенный из вершины на противоположную сторону.
В равнобедренном и равностороннем треугольниках биссектриса является медианой и высотой. В последнем случае их можно провести всего 3.
Однако в произвольном Δ — по 3, т. е. 3 высоты, 3 медианы и 3 биссектрисы.
Видео:Формула для биссектрисы треугольникаСкачать
Теорема о биссектрисах
Теорема о биссектрисах треугольника звучит таким образом: в любом Δ биссектрисы пересекаются только в одной точке — инцентре фигуры. Для доказательства нужно построить произвольный ΔКLМ, а затем следовать по такому алгоритму:
- Провести биссектрисы LN (к стороне КМ) и КU (к LM).
- На рисунке видно, что LN и KU пересекаются в одной точке (W).
- Доказывать теорему следует от противного — пусть биссектрисы не пересекаются.
- Если прямые не пересекаются, значит, они параллельны, т. е. LN || KU. Следовательно, KL — секущая.
- Сумма градусных мер односторонних углов эквивалентна 180, т. е. (∠К/2) + (∠L/2) = 180 (свойство параллельных прямых и секущей).
- Из соотношения в 5 пункте следует, что сумма ∠К + ∠L = 360.
- Сумма углов Δ эквивалентна 180. Однако при сложении значений двух ∠ величина их суммы больше 180. Следовательно, биссектрисы треугольника пересекаются в одной точке.
Необходимо доказать, что третья биссектриса (МV), проведенная из вершины М, проходит через точку W. Это делается таким образом:
- Из W следует опустить перпендикуляры на стороны Δ: WG, WF и WE.
- Нужно рассмотреть 2 ΔGBW и ΔBFW, которые являются прямоугольными, поскольку WG и WF — перпендикуляры, а BW — общая сторона. Углы ∠GBW и ∠WВF равны, т. к. их образует биссектриса LN (общий угол будет делиться на 2 равные части). Следовательно, ΔGBW и ΔBFW равны.
- Из равенства ΔGBW и ΔBFW получается отношение WG и WF.
- Аналогично доказывается равенство сторон WG и WЕ.
Далее следует рассмотреть ∠М. Следовательно, что координата точки W равноудалена от вершины М. На основании признака биссектрисы, W лежит на МV, поскольку W — точка пересечения биссектрис треугольника КLМ. Утверждение доказано.
Видео:Пересечение биссектрис треугольника в одной точке, Геометрия 7 классСкачать
Свойства и соотношения
На основании теоремы о биссектрисах Δ были получены некоторые важные свойства, которые рекомендуется применять при решении задач и доказательства других утверждений:
- Центр вписанной окружности соответствует точке их пересечения.
- Точка при пересечении делит биссектрису по такому соотношению: отношение суммарного значения прилежащих к противолежащей стороне.
- Угол между биссектрисами двух смежных углов является прямым.
- В равнобедренном Δ равны только 2 биссектрисы, а в равностороннем — 3. Кроме того, она является медианой и высотой.
При решении задач нужно находить их длину (L).
Для удобства необходимо обозначить стороны таким образом: КМ = d, КL = e и LМ = f, чтобы воспользоваться следующими формулами через известные параметры треугольника:
- Все стороны: Lm = [2 * (d * e * p * (p — f))^(½)] / (d + e), Lк = [2 * (d * f * p * (p — e))^(½)] / (d + f) и Ll = [2 * (d * f * p * (p — e))^(½)] / (d + f). Параметр «р» — полупериметр, т. е. р = (d + e + f) / 2.
- Стороны и угол: Lm = (2 * d * e * cos (∠M)) / (d + e), Lk = (2 * d * f * cos (∠K)) / (d + f) и Ll = (2 * f * e * cos (∠L)) / (f + e).
Соотношения позволяют найти не только длины Lk, Lm и Ll, но и другие параметры треугольников. Следует отметить, что углы во второй группе формул соответствуют биссектрисам, исходящим из них.
Таким образом, для решения задач на нахождение длины биссектрис необходимо знать теорию, доказательство теоремы, свойства, а также основные соотношения.
Видео:Как доказать, что биссектрисы треугольника пересекаются в одной точке?Скачать
Точка пересечения биссектрис
Как найти точку пересечения биссектрис треугольника по координатам его вершин?
Как найти радиус вписанной в треугольник окружности по координатам его вершин?
Точка пересечения биссектрис треугольника является центром вписанной в этот треугольник окружности.
Эта точка равноудалена от сторон треугольника. Расстояние от точки пересечения биссектрис до сторон треугольника равно радиусу вписанной окружности.
Следовательно, все три задачи сводятся к нахождению точки пересечения биссектрис треугольника.
Для этого надо сначала составить уравнения биссектрис треугольника и найти точку их пересечения.
Дан треугольник ABC с вершинами в точках A(0;-3), B(12;-12) и C(3,36;-0,48).
1) Найти точку пересечения биссектрис треугольника ABC.
2) Найти радиус вписанной в треугольник ABC окружности.
3) Составить уравнение вписанной в треугольник ABC окружности.
1) Составим уравнения прямых, содержащих стороны треугольника.
Уравнение прямой AC:
Уравнение прямой BC:
Составим уравнение биссектрисы треугольника ABC, исходящей из угла B. Она образована прямыми AB и BC:
откуда уравнения биссектрис угла B: x-y-24=0 или x+y=0. Чтобы понять, которое из двух уравнений является биссектрисой внутреннего угла треугольника, следует подставить в уравнения координаты точек A и C. Поскольку они лежат по разные стороны от биссектрисы внутреннего угла B, то подстановка их координат в уравнение биссектрисы даёт числа разных знаков.
A(0;-3) и C(3,36;-0,48) в x-y-24=0: 0-(-3)-24 0. Получили числа разных знаков, x+y=0 — биссектриса угла B треугольника ABC.
Составим уравнение биссектрисы угла C. Угол C образован прямыми AC и BC, откуда
уравнения биссектрис угла C: 7x-y-24=0 и x+7y=0.
A(0;-3), B(12;-12) в 7x-y-24=0: 7·0-(-3)-24 0. Получили числа разных знаков, значит 7x-y-24=0 — уравнение биссектрисы внутреннего угла C.
Поскольку все три биссектрисы треугольника пересекаются в одной точке, третью биссектрису находить не требуется.
Точку пересечения биссектрис углов B и C найдём из системы уравнений
O(3;-3) — точка пересечения биссектрис треугольника ABC. Эта точка является центром вписанной в треугольник окружности.
2) Радиус вписанной в треугольник ABC окружности можно найти как расстояние от точки O до прямой AB, BC или AC. Найдем, например, расстояние от O до AB:
3) Чтобы найти уравнение вписанной в треугольник ABC окружности, в уравнение окружности подставляем координаты центра O(3;-3) и r=9/5:
Видео:Построение биссектрисы в треугольникеСкачать
Определение и свойства биссектрисы угла треугольника
В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.
Видео:Биссектрисы треугольника.Скачать
Определение биссектрисы угла треугольника
Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.
Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.
Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.
Внешней называется биссектриса угла, смежного с внутренним углом треугольника.
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Свойства биссектрисы треугольника
Свойство 1 (теорема о биссектрисе)
Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):
Свойство 2
Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.
Свойство 3
Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).
Свойство 4
Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):
BD 2 = AB ⋅ BC – AD ⋅ DC
Свойство 5
Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.
- CD – внутренняя биссектриса ∠ACB;
- CE – биссектриса угла, смежного с ∠ACB;
- ∠DCE равен 90°, т.е. биссектрисы CD и CE перпендикулярны.
Видео:3 свойства биссектрисы #shortsСкачать
Пример задачи
Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.
Решение
Нарисуем чертеж согласно условиям задачи.
Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов).
BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
Следовательно, BC = 10 см.
Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):
Избавляемся от дробей и решаем получившееся уравнение:
8a = 60 – 6a
14a = 60
a ≈ 4,29
Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.
Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4:
AD 2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.
📺 Видео
Угол между двумя биссектрисами треугольникаСкачать
Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Точка пересечения биссектрис и точка пересечения серединных перпендикуляров в треугольникеСкачать
№245. Через точку пересечения биссектрис ВВ1 и СС1 треугольника ABC проведена прямая, параллельнаяСкачать
Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Свойство биссектрисы треугольника с доказательствомСкачать
Как найти биссектрису в треугольнике? 2 формулы биссектрисыСкачать
Геометрия Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 40:1Скачать
Медиана, высота и биссектриса треугольника. Центроид, инцентр, ортоцентр. Геометрия 7 класс.Скачать
найти уравнения биссектрис углов между прямымиСкачать
Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать