Как найти икс у треугольника

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Содержание
  1. Решение треугольника по трем сторонам
  2. Решение треугольника по двум сторонам и углу между ними
  3. Решение треугольника по стороне и любым двум углам
  4. Теория и практика по треугольникам (Часть Ⅱ)
  5. Площадь произвольного треугольника
  6. Тригонометрия в прямоугольных треугольниках
  7. Теорема синусов и теорема косинусов
  8. Что нужно знать:
  9. Как найти стороны прямоугольного треугольника
  10. Онлайн калькулятор
  11. Найти гипотенузу (c)
  12. Найти гипотенузу по двум катетам
  13. Найти гипотенузу по катету и прилежащему к нему острому углу
  14. Найти гипотенузу по катету и противолежащему к нему острому углу
  15. Найти гипотенузу по двум углам
  16. Найти катет
  17. Найти катет по гипотенузе и катету
  18. Найти катет по гипотенузе и прилежащему к нему острому углу
  19. Найти катет по гипотенузе и противолежащему к нему острому углу
  20. Найти катет по второму катету и прилежащему к нему острому углу
  21. Найти катет по второму катету и противолежащему к нему острому углу
  22. 💡 Видео

Видео:Найдите сторону треугольника на рисункеСкачать

Найдите сторону треугольника на рисунке

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем Как найти икс у треугольника.

Как найти икс у треугольника
Как найти икс у треугольника
Как найти икс у треугольника
Как найти икс у треугольника(1)
Как найти икс у треугольника(2)

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

Как найти икс у треугольника.

Пример 1. Известны стороны треугольника ABC: Как найти икс у треугольникаНайти Как найти икс у треугольника(Рис.1).

Решение. Из формул (1) и (2) находим:

Как найти икс у треугольникаКак найти икс у треугольника.
Как найти икс у треугольникаКак найти икс у треугольника.
Как найти икс у треугольника, Как найти икс у треугольника.

И, наконец, находим угол C:

Как найти икс у треугольникаКак найти икс у треугольника

Видео:Найдите третью сторону треугольникаСкачать

Найдите третью сторону треугольника

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Как найти икс у треугольника

Найдем сторону c используя теорему косинусов:

Как найти икс у треугольника.
Как найти икс у треугольника.

Далее, из формулы

Как найти икс у треугольника.
Как найти икс у треугольника.(3)

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

Как найти икс у треугольника.

Пример 2. Известны две стороны треугольника ABC: Как найти икс у треугольникаи Как найти икс у треугольника(Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

Как найти икс у треугольника,
Как найти икс у треугольникаКак найти икс у треугольникаКак найти икс у треугольника.

Из формулы (3) найдем cosA:

Как найти икс у треугольникаКак найти икс у треугольника
Как найти икс у треугольника.

Поскольку уже нам известны два угла то находим третий:

Как найти икс у треугольникаКак найти икс у треугольника.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Как найти икс у треугольника

Так как, уже известны два угла, то можно найти третий:

Как найти икс у треугольника.

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Как найти икс у треугольника, Как найти икс у треугольника.
Как найти икс у треугольника, Как найти икс у треугольника.

Пример 3. Известна одна сторона треугольника ABC: Как найти икс у треугольникаи углы Как найти икс у треугольника(Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Как найти икс у треугольникаКак найти икс у треугольника

Найдем сторону b. Из теоремы синусов имеем:

Как найти икс у треугольника
Как найти икс у треугольника

Найдем сторону с. Из теоремы синусов имеем:

Видео:Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать

Найдите сторону треугольника, если другие его стороны равны 1 и 5

Теория и практика по треугольникам (Часть Ⅱ)

Как найти икс у треугольникаПлощадь треугольников.

Тригонометрия в прямоугольных треугольниках.

Что такое синус/косинус.

Таблицы Брадиса. Как пользоваться.

Теорема синусов и косинусов.

Геометрия — это искусство хорошо рассуждать на плохо выполненных чертежах.

С основными свойствами разобрались, теперь рассмотрим формулы и их приминение.

Площадь произвольного треугольника

Как найти икс у треугольника

Нет, это не кривая пентаграмма, нужны на этом рисунке только обозначения. Рассмотрим формулы школьной программы.

Как найти икс у треугольникаВысоту умножаем на ту сторону, на которую приходит высота:
Как найти икс у треугольникаВ эту формулу подставляем угол между сторонами a и b:

Как найти икс у треугольникаУдобно использовать эту формулу, когда известны все стороны треугольника, p — полупериметр (половина суммы длин всех сторон):

Как найти икс у треугольникаДанная формула отлично помогает найти радиус вписанной окружности для любого треугольника, если известна площадь:

Как найти икс у треугольникаА эта формула помогает найти радиус описанной окружности для любого треугольника:

Как найти икс у треугольникаА зачем такое количество формул? К каждой задаче будут предоставлять разное дано, удобно знать и применять все формулы, чтобы максимально быстро решать задачи.

Полезные формулы для прямоугольного и равностороннего треугольника:

Как найти икс у треугольникаВ данном случае получается, что один катет «b» — высота треугольника, а катет «а» — основание.

Как найти икс у треугольникаЭту формулу можно вывести большим количеством способов, самый простой через формулу №2

Задача №1. Дано на рисунке:

Как найти икс у треугольникаОттолкнемся от вопроса: нужно найти площадь. Помимо 5 формул для произвольного треугольника, нам подойдет формула нахождения площади через полупроизведение катетов.

Вариантов здесь много (можно через т. Пифагора), но самый быстрый — найти ∠А = 180°− 90° − 60° = 30°, тогда площадь найдем по (2) формуле: S = ½absinα

Как найти икс у треугольникаОтвет: 60

Задача №2. Дано на рисунке:

Как найти икс у треугольникаСнова оттолкнемся от вопроса: нужно найти площадь. Дан обычный треугольник, значит, наш выбор ограничен первыми 5−ью формулами. В первой нужна высота, во второй угол, а в третьей полупериметр, но мы же знаем все стороны! Для начала найдем периметр и полупериметр:

Как найти икс у треугольникаТеперь можно подставить все числа в формулу площади:

Как найти икс у треугольника

Главное — правильно определиться с формулой.

Задача №3. Дано на рисунке:

Как найти икс у треугольника

В ΔABH: ∠A = 180°− 90° − 45° = 45°, значит, ∠A = ∠B => BH = AH = 12.

Тогда площадь можно найти по формуле (1) S=½bh. Высота AH = 12, основание AC = 16+12 = 28. => S = ½×12×28 = 168

Задача №4. Дано на рисунке:

Как найти икс у треугольникаОттолкнемся от отношения, которое нам дано. Мы знаем, что сумма данных углов равна 90°, если ∠ACM = х и ∠ВCM = 2х, тогда 2х+х = 90°

∠ACM = х = 30° => ∠ВCM = 60°. А что у нас равно 4-ем? Да, медиана! А медиана, проведенная из прямого угла, равна половине гипотенузы (2−ое свойство). Тогда отметим равные углы:

Как найти икс у треугольникаВ ΔBCM получается ∠ВCM = ∠СВM = 60°, тогда ∠СМВ = 60° и ΔBCM — правильный:

Как найти икс у треугольникаПлощадь найдем по (2) формуле: S = ½absinα:

Как найти икс у треугольника

Задача №5. Дано на рисунке:

В дано есть только стороны, а найти нужно угол. Как это сделать? Вот стороны 14,2 и 7,1 во сколько раз отличаются? Да, в 2 раза, а значит угол ∠BAL = 30° (против угла в 30° лежит катет, который в два раза меньше гипотенузы).

Как найти икс у треугольника

Значит, ∠A = 60° => ∠ACB = 180° − 90° − 60° = 30°, а ∠ACB — смежный с ∠ACV => ∠ACV = 180° − 30° = 150°.

Что касается LC: внимательно рассмотрим ΔALC, можно даже лупой воспользоваться. Что видишь? ∠LAC = ∠ACL = 30° => ΔALC — равнобедренный, LC = AL = 14,2.

Ответ: 14,2 и 150°

Тригонометрия в прямоугольных треугольниках

В прямоугольном треугольнике три стороны: 2 катета и гипотенуза.

Катеты меньшие стороны треугольника. Гипотенуза большая сторона, которая лежит напротив угла в 90°.

Относительно угла α:

Как найти икс у треугольника

Катет, который составляет угол, называют прилежащим. Катет, который находится напротив угла, называют противолежащим. Логично? Замечательно!

Тригонометрические функции (синус, косинус. ) задают связь между углом и длинами сторон.

Как найти икс у треугольника

Но хорошо бы знать какие-то значения тригонометрических функций при определенных углах. Все значения вместе образуют таблицу Брадиса. С ее помощью можно вычислить почти любое значение тригонометрической функции при заданом угле. Но как с ней работать?

Найдем sin(10°) . Для этого выберем столбец sin и в нем найдем 10°. Ближайшее значение — это то, что нам нужно — 0,1736.

Как найти икс у треугольникаА что за столбец 0′; 6′; 12′ и т.д. Это минуты! Не те, которых мы ждем в конце урока, а градусные минуты.

Из общего: и те, и другие минуты измеряются в промежутке от 0 до 60.

Градусные минуты делят один градус на 60 минут (1°=60′), нужны они для большей точности задания угла.

p.s. Есть еще и градусные секунды, и в одной градусной минуте 60 градусных секунд, знакомо? 1° = 60′ = 3600».

Семь десятых градуса нужно перевести в минуты. Можно через пропорцию:

Как найти икс у треугольника

Теперь в таблице нужно найти 77°42′ для косинуса. Для синуса минуты прописаны, а для косинуса нет. Но мы же люди не гордые, сами напишем, но в обратном порядке. На пересечении 77° и 42′ получаем наше значение:

Как найти икс у треугольника

Но чтобы не загромождать таблицу 0, его в начале пишут только в первых строчках, поэтому ответ cos(77,7°) = 0,213.

В задачах же таким обилием углов похвастаться нельзя, достаточно знать значения для 30°; 45°; 60°; 90°.

Как найти икс у треугольника

Искусство решать геометрические задачи чем-то напоминает трюки иллюзионистов — иногда,

даже зная решение задачи, трудно понять, как можно было до него додуматься.

Задача №6. Дано на рисунке:

Как найти икс у треугольника

В этой задаче известен противолежащий катет относительно угла в 45°, а найти нужно гипотенузу. Смотрим, где у нас есть противполежащий катет и гипотенуза? Это синус!

Смотрим в таблице, чему равен синус 45°, и подставляем в отношение:

Как найти икс у треугольника

Задача №7. Дано на рисунке:

Как найти икс у треугольника

Мы разобрались с тригонометрическими функциями в прямоугольных треугольниках, значит, и в этой задаче нужно перейти к прямоугольному треугольнику.

В ΔLTK — равнобедренный : ∠L = ∠LKT = (180° − 120°)/2 = 30°

Отлично, в прямоугольном ΔLVK: ∠L = 30° и известна гипотенуза, а нам нужно найти противолежащий катет, чем воспользуемся? Опять синусом!

Как найти икс у треугольника

Теорема синусов и теорема косинусов

Сразу возникает вопрос, а теорема тангенсов тоже есть? Конечно, есть, но она очень редко используется.

Как найти икс у треугольника

Для любого треугольника можно записать такое соотношение, это будет теорема синусов:

Как найти икс у треугольника

Запомни, что сторона относится к синусу противолежащего угла.

Следствие из теорма синусов гласит, что любое соотношение равно двум радиусам описанной окружности:

Как найти икс у треугольника

Для любого треугольника можно записать такое соотношение, это будет теорема косинусов:

Как найти икс у треугольника

А что будет, если α = 90°, а cos(90) = 0? Получится:

Как найти икс у треугольника

Теорема Пифагора, вот так просто можно запомнить теорему косинусов. Начать как теорему Пифагора, а затем вычесть удвоенное произведение на косинус угла между ними.

Можно записать и для других сторон в этом же треугольнике:

Как найти икс у треугольника

Задача №8. Дано на рисунке:

Как найти икс у треугольника

Запишем теорему синусов для двух отношений:

Как найти икс у треугольника

Выразим отсюда KT:

Как найти икс у треугольника

∠K = 180° − 60° − 45° = 75°. Чтобы найти синус угла 75°, советую посмотреть эту статью, нужно воспользовать формулой суммы синусов:

Как найти икс у треугольника

Тогда представим 75° в виде двух табличных значений:

Как найти икс у треугольника

Аналогично выразим LT:

Как найти икс у треугольника

Ответ: 16,3 и 22,3

Задача №9. Дано на рисунке:

Как найти икс у треугольника

Найти нужно x и y. Запишем теорему косинусов для этого треугольника:

Как найти икс у треугольника

Икс выразим через игрек:

Как найти икс у треугольника

Отлично, поздравляю тебя с Elementary по геометрии!

Что нужно знать:

  1. Вертикальные, смежные, соответственные, накрест лежащие углы.
  2. Равенство и подобие треугольников.
  3. Что такое медиана, биссектриса, высота.
  4. Свойства треугольников.
  5. Площадь треугольников.
  6. Синус/косинус в треугольнике.
  7. Теорему синусов и косинусов.

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Как найти стороны прямоугольного треугольника

Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать

По силам каждому ★ Найдите стороны треугольника на рисунке

Онлайн калькулятор

Как найти икс у треугольника

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² — 4² = √ 25 — 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

💡 Видео

Почти никто не решил ➜ Найдите сторону треугольникаСкачать

Почти никто не решил ➜ Найдите сторону треугольника

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Диагностический вариант 4 ЕГЭ по профильной математике. Уровень ЕГЭ 2024Скачать

Диагностический вариант 4 ЕГЭ по профильной математике. Уровень ЕГЭ 2024

Как найти стороны треугольников #математика #огэ #shortsСкачать

Как найти стороны треугольников #математика #огэ #shorts

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Задача про стороны треугольника. Геометрия 7 класс.Скачать

Задача про стороны треугольника. Геометрия 7 класс.

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

КАК найти площадь трапеции? Геометрия 8 класс | Математика

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Площадь треугольника. Как найти площадь треугольника?Скачать

Площадь треугольника. Как найти площадь треугольника?

Как найти Х и У? Нельзя пользоваться теоремами синусов и косинусов!Скачать

Как найти Х и У? Нельзя пользоваться теоремами синусов и косинусов!

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс
Поделиться или сохранить к себе: