Видео:Периметр правильного шестиугольника равен 72. Найдите диаметр описанной окружности.Скачать
Правильный шестиугольник
1. Все углы правильного шестиугольника равны 120°
2. Все стороны правильного шестиугольника равны между собой
3. Периметр правильного шестиугольника
4. Формула площади правильного шестиугольника
5. Радиус описанной окружности правильного шестиугольника
6. Диаметр описанной окружности правильного шестиугольника
7. Радиус вписанной окружности правильного шестиугольника
8. Соотношения между радиусами вписанной и описанной окружностей
9. Угол , угол , угол , откуда следует, что треугольник — прямоугольный с гипотенузой равной . Следовательно,
10. Длина дуги AB равна
11. Формула площади сектора
.
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Как находить диаметр описанной окружности шестиугольника
Периметр правильного шестиугольника равен 42. Найдите диаметр описанной окружности.
Это задание ещё не решено, приводим решение прототипа.
Периметр правильного шестиугольника равен 72. Найдите диаметр описанной окружности.
Найдем сторону шестиугольника: 72 : 6 = 12.
Рассмотрим треугольник AOB. Радиус описанной вокруг шестиугольника окружности равен его стороне, а диаметр вдвое больше. Поэтому он равен 24.
Видео:Периметр правильного шестиугольника равен 150. Найдите диаметр описанной около него окружности (ЕГЭ)Скачать
Гексагон
Гексагон — правильный выпуклый многоугольник с шестью сторонами или шестиугольник.
Шестиугольник — это многоугольник, имеющий шесть сторон и шесть углов. В правильном шестиугольнике все стороны равны, а углы образуют шесть равносторонних треугольников.
Выпуклый шестиугольник — это многоугольник, с общим количеством вершин, равным шести, при этом все точки такого шестиугольника лежат по одну сторону от прямой, которая проведена между двумя любыми соседними его вершинами.
Правильный шестиугольник — это шестиугольник, все стороны которого равны между собой.
Сумма углов выпуклого шестиугольника определяется по общей формуле 180°(n-2) и равна 180 ( 6 — 2 ) = 720 градусов.
При решении задач для нахождения площади произвольного (неправильного) шестиугольника используют метод трапеций, который заключается в разбиении фигуры на отдельные трапеции, площадь каждой из которых можно найти по известным всем формулам.
Свойства правильного шестиугольника
- все внутренние углы равны между собой
- каждый внутренний угол правильного шестиугольника равен 120 градусам
- все стороны равны между собой
- сторона правильного шестиугольника равна радиусу описанной окружности
- большая диагональ правильного шестиугольника является диаметром описанной вокруг него окружности и равна двум его сторонам
- меньшая диагональ правильного шестиугольника в ( sqrt ) раз больше его стороны.
- vеньшая диагональ правильного шестиугольника перпендикулярна его стороне
- правильный шестиугольник заполняет плоскость без пробелов и наложений
- диагонали пересекаются в одной точке и делят его на 6 равносторонних треугольников, у которых высота равна радиусу вписанной в правильный шестиугольник окружности. 6.
- инвариантен относительно поворота плоскости на угол, кратный относительно центра описанной окружности (слово “инвариантный” означает, что при таких поворотах правильный шестиугольник перейдёт в себя, то есть такие повороты являются его симметриями)
- nреугольник, образованный стороной шестиугольника, его большей и меньшей диагоналями, прямоугольный, а его острые углы равны 30° и 60° .
Внутренние углы Внутренние углы в правильном шестиугольнике равны (120^circ) :
Апофема Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)
Апофема Апофема правильного шестиугольника (перпендикуляр, проведенный из центра к любой стороне)
Радиус вписанной окружности правильного шестиугольника равен апофеме:
(r = m = alargefrac<>normalsize)
Радиус описанной окружности равен стороне правильного шестиугольника:
Периметр правильного шестиугольника
Площадь правильного шестиугольника Формула площади правильного шестиугольника через длину стороны
(S = pr = largefrac<>normalsize),
где (p) − полупериметр шестиугольника.
Площадь правильного шестиугольника Формула площади правильного шестиугольника через радиус вписанной окружности
Площадь правильного шестиугольника Формула площади правильного шестиугольника через радиус описанной окружности
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
📺 Видео
Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать
Вписанная и описанная окружность - от bezbotvyСкачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Периметр правильного шестиугольника равен 222. Найдите диаметр описанной окружности.Скачать
Как найти диаметр окружности, описанной около равнобедренного треугольникаСкачать
найти радиус окружности, описанной вокруг треугольникаСкачать
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Формулы для радиуса окружности #shortsСкачать
Геометрия - Построение шестиугольникаСкачать
Нахождение диаметра описанной окружностиСкачать
Построить описанную окружность (Задача 1)Скачать
Вписанная и описанная окружности | Лайфхак для запоминанияСкачать
151 Диагонали правильного шестиугольника пересекаются в центре его описанной окружности (268)Скачать
Вариант 32, №8. Радиус окружности, вписанной в правильный шестиугольник. Длина окружности. ЗадачаСкачать