Как изобрел паскаль треугольник

Треугольник Паскаля. Свойства треугольника Паскаля

Как изобрел паскаль треугольник

Прогресс человечества во многом связан с открытиями, сделанными гениями. Одним из них является Блез Паскаль. Его творческая биография еще раз подтверждает истинность выражения Лиона Фейхтвангера «Талантливый человек, талантлив во всем». Все научные достижения этого великого ученого трудно перечесть. К их числу относится одно из самых элегантных изобретений в мире математики — треугольник Паскаля.

Как изобрел паскаль треугольник

Видео:Треугольник ПаскаляСкачать

Треугольник Паскаля

Несколько слов о гении

Блез Паскаль по современным меркам умер рано, в возрасте 39 лет. Однако за свою короткую жизнь он проявил себя как выдающийся физик, математик, философ и писатель. Благодарные потомки назвали в его честь единицу давления и популярный язык программирования Pascal. Он уже почти 60 лет используется для обучения написания различных кодов. Например, с его помощью каждый школьник может написать программу для вычисления площади треугольника на «Паскале», а также исследовать свойства схемы, о которой речь пойдет ниже.

Деятельность этого ученого с экстраординарным мышлением охватывает самые разные области науки. В частности, Блез Паскаль является одним из основателей гидростатики математического анализа, некоторых направлений геометрии и теории вероятностей. Кроме того, он:

  • создал механический калькулятор, известный под названием Паскалева колеса;
  • представил экспериментальное доказательство того, что воздух обладает упругостью и имеет вес;
  • установил, что барометр можно использовать для предсказания погоды;
  • изобрел тачку;
  • придумал омнибус — конные экипажи с фиксированными маршрутами, ставшие впоследствии первым видом регулярного общественного транспорта и пр.

Как изобрел паскаль треугольник

Видео:Зачем нужен треугольник Паскаля (спойлер: для формул сокращённого умножения)Скачать

Зачем нужен треугольник Паскаля (спойлер: для формул сокращённого умножения)

Арифметический треугольник Паскаля

Как уже было сказано, этот великий французский ученый внес огромный вклад в математическую науку. Одним из его безусловных научных шедевров является «Трактат об арифметическом треугольнике», который состоит из биномиальных коэффициентов, расставленных в определенном порядке. Свойства этой схемы поражают своим разнообразием, а сама она подтверждает пословицу «Все гениальное — просто!».

Видео:#26. Треугольник Паскаля как пример работы вложенных циклов | Python для начинающихСкачать

#26. Треугольник Паскаля как пример работы вложенных циклов | Python для начинающих

Немного истории

Справедливости ради нужно сказать, что на самом деле треугольник Паскаля был известен в Европе еще в начале 16 века. В частности, его изображение можно увидеть на обложке учебника арифметики известного астронома Петра Апиана из Ингольтштадского университета. Похожий треугольник представлен и в качестве иллюстрации в книге китайского математика Ян Хуэй, изданной в 1303 году. О его свойствах было известно также и замечательному персидскому поэту и философу Омару Хайяму еще в начале 12 века. Причем считается, что он познакомился с ним из трактатов арабских и индийских ученых, написанных ранее.

Как изобрел паскаль треугольник

Видео:4.3 Треугольник Паскаля 1. "Поколение Python": курс для продвинутых. Курс StepikСкачать

4.3 Треугольник Паскаля 1. "Поколение Python": курс для продвинутых. Курс Stepik

Описание

Прежде чем исследовать интереснейшие свойства треугольника Паскаля, прекрасного в своем совершенстве и простоте, стоит узнать, что он из себя представляет.

Говоря научным языком, эта числовая схема — бесконечная таблица треугольной формы, образованная из биномиальных коэффициентов, расположенных в определенном порядке. В его вершине и по бокам находятся цифры 1. Остальные позиции занимают числа, равные сумме двух чисел, расположенных над ними рядом выше. При этом все строки треугольника Паскаля симметричны относительно его вертикальной оси.

Видео:Математические секреты треугольника ПаскаляСкачать

Математические секреты треугольника Паскаля

Основные свойства

Треугольник Паскаля поражает своим совершенством. Для любой строки под номером n (n = 0, 1, 2…) верно:

  • первое и последнее числа — 1;
  • второе и предпоследнее — n;
  • третье число равно треугольному числу (количеству кружков, которые можно расставить в виде равностороннего треугольника, т. е. 1, 3, 6, 10): Tn-1 = n (n — 1) / 2.
  • четвертое число является тетраэдрическим, т. е. представляет собой пирамиду с треугольником в основании.

Кроме того, сравнительно недавно, в 1972 году, было установлено еще одно свойство треугольника Паскаля. Для того чтобы его обнаружить, нужно записать элементы этой схемы в виде таблицы со сдвигом строк на 2 позиции. Затем отмечают числа, делящиеся на номер строки. Оказывается, что номер столбца, в котором выделены все числа, является простым числом.

Тот же трюк можно осуществить и по-другому. Для этого в треугольнике Паскаля заменяют числа на остатки от их деления на номер строки в таблице. Затем располагают строки в полученном треугольнике так, чтобы следующая из них начиналась правее на 2 колонки от первого элемента предыдущей. Тогда столбцы, имеющие номера, являющиеся простыми числами, будут состоять только из нулей, а в тех, у которых они составные, будет присутствовать хотя бы один ноль.

Видео:ТРЕУГОЛЬНИК ПАСКАЛЯ 😊 ЧАСТЬ I #shorts #математика #егэ #задачи #задачаналогику #егэ2022 #огэ2022Скачать

ТРЕУГОЛЬНИК ПАСКАЛЯ 😊 ЧАСТЬ I #shorts #математика #егэ #задачи #задачаналогику #егэ2022 #огэ2022

Связь с биномом Ньютона

Как известно, так называется формула для разложения на слагаемые целой неотрицательной степени суммы двух переменных, которая имеет вид:

Как изобрел паскаль треугольник

Как изобрел паскаль треугольник

Присутствующие в них коэффициенты равны Cn m = n! / (m! (n — m)!), где m, представляет собой порядковый номер числа в строке n треугольника Паскаля. Иными словами, имея под рукой эту таблицу, можно легко возводить в степень любые числа, предварительно разложив их на два слагаемых.

Таким образом, треугольник Паскаля и бином Ньютона взаимосвязаны самым тесным образом.

Как изобрел паскаль треугольник

Видео:Треугольник Паскаль. Как применять на простом примере!Скачать

Треугольник Паскаль. Как применять на простом примере!

Математические чудеса

При внимательном изучении треугольника Паскаля можно обнаружить, что:

  • сумма всех чисел в строке с порядковым номером n (отсчет ведется с 0) равна 2 n ;
  • если строки выровнять по левому краю, то суммы чисел, которые расположены вдоль диагоналей треугольника Паскаля, идущих снизу вверх и слева направо, равны числам Фибоначчи;
  • первая «диагональ» состоит из натуральных чисел, идущих по порядку;
  • любой элемент из треугольника Паскаля, уменьшенный на единицу, равен сумме всех чисел, расположенных внутри параллелограмма, который ограничен левыми и правыми диагоналями, пересекающимися на этом числе;
  • в каждой строке схемы сумма чисел на четных местах равна сумме элементов на нечетных местах.

Как изобрел паскаль треугольник

Видео:Треугольник Паскаля Python. Коэффициенты для Бинома НьютонаСкачать

Треугольник Паскаля Python. Коэффициенты для Бинома Ньютона

Треугольник Серпинского

Такая интересная математическая схема, достаточно перспективная с точки зрения решения сложных задач, получается, если раскрасить четные числа Паскалевого изображения в один цвет, а нечетные — в другой.

Треугольник Серпинского можно выстроить и другим образом:

  • в закрашенной схеме Паскаля перекрашивают в другой цвет серединный треугольник, который образован путем соединения середин сторон исходного;
  • точно также поступают с тремя незакрашенными, расположеными в углах;
  • если процедуру продолжать бесконечно, то в итоге должна получиться двухцветная фигура.

Самое интересное свойство треугольника Серпинского — его самоподобие, так как он состоит из 3-х своих копий, которые уменьшены в 2 раза. Оно позволяет отнести эту схему к фрактальным кривым, а они, как показывают новейшие исследования лучше всего подходят для математического моделирования облаков, растений, дельт рек, да и самой Вселенной.

Как изобрел паскаль треугольник

Видео:Бином Ньютона и треугольник Паскаля | Учитель года Москвы — 2020Скачать

Бином Ньютона и треугольник Паскаля | Учитель года Москвы — 2020

Несколько интересных задач

Где используется треугольник Паскаля? Примеры задач, которые можно решать с его помощью, достаточно разнообразны и относятся к различным областям науки. Рассмотрим некоторые, наиболее интересные из них.

Задача 1. У некоторого большого города, обнесенного крепостной стеной, только одни входные ворота. На первом перекрестке основная дорога расходится на две. То же происходит и на любом другом. В город заходят 210 человек. На каждом из встречающихся перекрестков они делятся пополам. Сколько человек будет находить на каждом перекрестке, когда делиться будет уже невозможно. Ее ответом является 10 строка треугольника Паскаля (формула коэффициентов представлена выше), где по обе стороны от вертикальной оси расположены числа 210.

Задача 2. Имеется 7 наименований цветов. Нужно составить букет из 3 цветков. Требуется выяснить, сколькими различными способами это можно сделать. Эта задача из области комбинаторики. Для ее решения опять же используем треугольник Паскаля и получаем на 7 строке на третьей позиции (нумерация в обоих случаях с 0) число 35.

Как изобрел паскаль треугольник

Теперь вы знаете, что изобрел великий французский философ и ученый Блез Паскаль. Его знаменитый треугольник при правильном использовании может стать настоящей палочкой-выручалочкой для решения множества задач, особенно из области комбинаторики. Кроме того, его возможно использовать для разгадывания многочисленных загадок, связанных с фракталами.

Видео:Несколько красивых свойств треугольника ПаскаляСкачать

Несколько красивых свойств треугольника Паскаля

Математика, которая мне нравится

Математика для школьников и студентов, обучение и образование

Видео:Числа сочетаний. Треугольник Паскаля | Ботай со мной #059 | Борис Трушин |Скачать

Числа сочетаний. Треугольник Паскаля | Ботай со мной #059 | Борис Трушин |

Чудесный треугольник Блеза Паскаля

Все узнают о треугольнике Паскаля в юности. Но, видимо, узнают не все чудеса, которые содержит треугольник. В самом деле, мы до сих пор открываем новые вещи!

Строится треугольник довольно легко: по внешним краям нужно поставить единицы, а каждое число внутри равно сумме двух чисел, которые стоят над ним. Так, третье число в шестой строке равно Как изобрел паскаль треугольник, потому что это сумма чисел Как изобрел паскаль треугольники Как изобрел паскаль треугольник.

Внимание! На самом деле мы будем говорить, что Как изобрел паскаль треугольникявляется вторым числом в пятой строке. По причинам, которые скоро станут ясны, мы начинаем нумеровать строки и столбцы треугольника с нуля. Например, второе число в четвертой строке равно Как изобрел паскаль треугольник.

Зная правило сложения, можно продолжать бесконечно: вы можете написать столько строк, сколько позволит ваше терпение.

Как изобрел паскаль треугольник

Первые 10 строк треугольника Паскаля

Паскаль ввел свой треугольник в 1653 г. в Traité du triangle arithmétique как часть задачи исследования вероятностей и для вычислений. Задачи были примерно такие: “Если я хочу выбрать двух человек из четырех данных, сколько существует возможных пар?’’ или “Какова вероятность выпадения фулл-хауса (примеч. в покере три карты одного достоинства и две другого), когда раздается по пять карт из колоды, которая хорошо перемешана?’’ Паскаль и Ферма в основном обсуждали вероятность в письмах, которыми они обменивались в то время. Вы можете увидеть исходный треугольник Паскаля здесь.

Каким образом треугольник связан с вероятностью? Ну, если вы хотите выбрать Как изобрел паскаль треугольникобъектов из Как изобрел паскаль треугольникданных, то количество возможных вариантов выбора равно Как изобрел паскаль треугольник-му числу в Как изобрел паскаль треугольник-й строке треугольника. Помните, что номера строк и чисел в строках треугольника начинаются с нуля! Используя это правило, мы видим, что существует ровно Как изобрел паскаль треугольникспособов выбрать двух человек из четырех данных. И так Как изобрел паскаль треугольник— третье число в девятой строке треугольника, то существует Как изобрел паскаль треугольникспособа выбрать трех человек из девяти данных. Научившись вычислять это, вы сделаете маленький шаг к вычислению всевозможных вероятностей.

На первый взгляд, кажется довольно непонятным, почему треугольник дает правильный ответ на этот вопрос. Может также показаться странным, что мы должны всегда начинать с нуля, чтобы заставить его работать. Чтобы увидеть, что все это совершенно верно, мы сделаем два замечания.

Во-первых, если у вас есть группа объектов, каким количеством способов вы можете выбрать нуль объектов из них? Есть ровно один способ выбрать нуль объектов, а именно: просто заявив, что вы не берете ни одного из них. Кроме того, у вас есть только один способ выбрать все объекты. И это как раз соответствует единицам на двух концах каждой строки.

Как изобрел паскаль треугольник

Во-вторых, если мы хотим выбрать Как изобрел паскаль треугольникпредметов из данных Как изобрел паскаль треугольник, мы замечаем, что есть два взаимоисключающих сценария: либо наш любимый предмет является одним из выбранных, либо это не так. Если мы выбираем его, то мы должны также выбрать Как изобрел паскаль треугольникпредмет из оставшихся Как изобрел паскаль треугольникпредметов, чтобы выбрать ровно Как изобрел паскаль треугольникпредметов. Если мы не выбираем данный предмет, то мы должны выбрать все Как изобрел паскаль треугольникпредметов из данных Как изобрел паскаль треугольникпредмета, оставшихся после исключения нашего любимого предмета. Так как это взаимоисключающие возможности, чтобы получить общее количество вариантов выбора, мы должны сложить количества вариантов в каждом сценарии.

Короче говоря, чтобы получить число способов выбора Как изобрел паскаль треугольникобъектов из данных Как изобрел паскаль треугольник, мы должны сложить количество способов выбрать Как изобрел паскаль треугольникобъект из Как изобрел паскаль треугольник, и число способов выбрать Как изобрел паскаль треугольникобъектов из Как изобрел паскаль треугольник. Но это именно и есть правило сложения для треугольника Паскаля!

Мы уже знаем, что треугольник полностью определяется расположением единиц по его сторонам и правилом сложения. Так как эти свойства применимы также к ответу на вопрос о количестве вариантов выбора объектов, треугольник должен и здесь давать правильный ответ.

Возможность сделать такие расчеты неоценима во множестве случаев. Поэтому мало удивляет, что Паскаль не был первым. Данные числа были рассмотрены индийскими, китайскими и иранскими математиками в разное время, начиная с момента более чем тысячелетней давности. И, конечно, все узнают треугольник Яна Хуэя, 1303 г.:

Как изобрел паскаль треугольник

Забавно, даже не будучи в состоянии различить числа, вы можете найти опечатку в этом треугольнике, которому больше 700 лет! Подсказка: правило сложения делает треугольник Паскаля симметричным относительно вертикальной прямой, проходящей через его вершину. Если вы посмотрите внимательно, в треугольнике Ян Хуэя эта симметрия в одном месте нарушается.

В треугольнике много чудесного. Где же чудеса? Некоторые из них легко заметить. Если вы сложите числа в Как изобрел паскаль треугольник-й строке треугольника, вы всегда получите Как изобрел паскаль треугольникв степени Как изобрел паскаль треугольник(например, Как изобрел паскаль треугольник). Для нас это довольно скучно.

Несколько более интересным является тот факт, что если вы сложите числа, стоящие в треугольнике по диагоналям, получится последовательность чисел Фибоначчи. А последовательность чисел Фибоначчи сама содержит множество сюрпризов.

Как изобрел паскаль треугольник

Недавно нечто удивительное и новое было обнаружено в треугольнике Паскаля. Как мы видели, если сложить числа, стоящие в строке треугольника, происходит что-то интересное. Этот факт о суммах так же стар, как и сам треугольник. Однако до 2012 г., до Харлана Бразерса, никто не пытался выяснить, что произойдет, если перемножить числа в каждой строке.

Давайте обозначим через Как изобрел паскаль треугольникпроизведение чисел в Как изобрел паскаль треугольник-й строке треугольника. Так, Как изобрел паскаль треугольник, и так далее. Числа, которые получаются, кажется, не имеют каких-либо явных чудесных свойств. У Бразерса возникла идея посмотреть, что произойдет, если вы разделить эти произведения, вычисленные для рядом стоящих строк. Точнее, для Как изобрел паскаль треугольникон нашел числа Как изобрел паскаль треугольник, получающиеся по следующей формуле:

Как изобрел паскаль треугольник

Т. е. для каждой строки он рассмотрел дробь, числитель которой равен произведению всех чисел в строке, стоящей под ней, и в строке, стоящей над ней, а знаменатель — произведению всех чисел в данной строке в квадрате.

И вот удивительная вещь: когда Как изобрел паскаль треугольникстановится все больше, это отношение становится все ближе к числу Как изобрел паскаль треугольник! Помните, Как изобрел паскаль треугольник— это десятичное число с бесконечным числом цифр, приближенно равное Как изобрел паскаль треугольник. Оно появляется при капитализации процентов, модели роста численности населения и других ситуациях с экспоненциальным ростом. Удивительно, что это число может быть таким довольно простым способом найдено в треугольнике Паскаля. Так как вы знаете, что нужно искать Как изобрел паскаль треугольник, несложно понять, что рассмотренное отношение действительно становится все ближе к Как изобрел паскаль треугольникс ростом Как изобрел паскаль треугольник. Как вы можете видеть здесь, для вычислений требуется всего лишь немного алгебры.

Вот такая симпатичная анимация Ричарда Грина наглядно показывает результат Харлана Бразерса:

Как изобрел паскаль треугольник

Существует еще одно чудо в треугольнике, которое каждый должен знать. Давайте каждое число в треугольнике покрасим в один из двух цветов, в зависимости от того, является оно четным или нечетным. Например, мы могли бы покрасить четные числа белым, а нечетные — синим. Если мы сделаем это для первых 500 строк треугольника, получим вот такую закономерность:

Как изобрел паскаль треугольник

Это известный фрактал, известный как треугольник Серпинского! Это приводит к разного рода вопросам. Число четное или нечетное, если оно при делении на Как изобрел паскаль треугольникдает остаток Как изобрел паскаль треугольникили Как изобрел паскаль треугольниксоответственно. Что происходит, когда разделим на Как изобрел паскаль треугольник? Остатки могут быть равны Как изобрел паскаль треугольникили Как изобрел паскаль треугольник. Что произойдет, если использовать восемь цветов и покрасить каждое число в соответствии с его остатком при делении на восемь? Для первых 500 строк треугольника получим прекрасную картину:

Как изобрел паскаль треугольник

Существует забавное приложение, которое позволяет увидеть, что происходит, если менять число, на которое вы делите (также называемое модулем). Полезный совет: когда вы используете приложение, нажмите на маленький символ “плюс’’, чтобы использовать более детальную версию управления. В треугольнике Паскаля есть множество других удивительных вещей. Для начала, если вы заинтересовались этим, подойдет веб-сайт mathforum.org. Ну а более, скажем, эксцентричные, вещи, которые можно найти в треугольнике, имеются здесь.

Комментариев: 7

1 Murad:

Грубые ошибки – абсурды, допущенные предками и нами

Мои исследования раскрыли следующие грубые ошибки – абсурды, допущенные предками и нами:
1. Считали, что человек – смертен, а оказывается, он вечен и идеален. Во Вселенной созданные тела, откуда вышли, туда никогда не возвращаются. Тогда нет смерти – все созданные тела во Вселенной живые. Все, до сих пор рожденные человеком восстанавливаются в вечном и идеальном виде, каждые 30-разрядными кодами – номерами находят свои идеальные пары, причем сумма кодов – номеров пар 30 девятки.
2. Мы только поднимается на 4 ступени умственного развития, а их 7: Дальше не разделяемая величина 1бутто =1000 ст.-7 = 10 ст.-21 – начало, вес и объем живой клетки – живой души и дальше не расширяемая величина 1сапа =1000 ст.7 = 10 ст.21. Это размер каждой Солнечной системы и их будут 3 секстиллиона.
3. Все созданные тела во Вселенной состоят одних и тех же клеток – кубов, веса и объема 1бутто = 10-21. Идеальная женщина 25-летная состоит из 360 секстиллионов клеток, а идеальный мужчина 25-летний 366 секстиллионов = 366х10ст.21 клеток, при этом каждая клетка есть сам человек. Это означает, что часть равна целому: Один «Я» за всех «366х10ст.21Я» и «366х10ст.21 Я» за одного «Я» – это для мужчин.
4. Часть равна целому и нет никаких дробных чисел, а считали наоборот. Тогда нет иррациональных и трансцендентных чисел. Также нет логарифмы, тригонометрические функции, пределы, дифференциалы и интегралы, вариационные счисления, теории вероятности и статистики. Вселенная и знания конечны, а считали наоборот. Нет необходимости использования подкоренные выражения.
5. Мы равенство Zn = Xn +Yn считали великой теоремой Ферма или Диофанта уравнение, а есть решение уравнения (Zn – Xn)Xn = (Zn – Yn)Yn. Тогда Zn = – (Xn +Yn) есть решение уравнения (Zn+Xn)Xn = (Zn + Yn)Yn. Перепутали решение с уравнением, а не знали само уравнение. Это абсурд, для математиков позор!
Решения оптимизационных задач приводили к системам линейных, степенных и дифференциальных уравнений. Оказывается, что мы перепутали решение с системой уравнением, а не знали само уравнение: Zn = Xn +Yn есть решение уравнения (Zn- Xn)Xn = (Zn – Yn)Yn. Решение Zn = Xn +Yn есть +103n = +(500 x 103(n-1) + 500 x103(n-1)) и -103n = – (500 x 103(n-1) + 500 x103(n-1)). Каждые 103n =10n х 102n – есть основание куба и одновременно рубика порядка 10n.
Мы равенство c2= a2+ b2: квадрат гипотенузы = сумме квадрата катетов, считали теоремой Пифагора, а оказывается, что оно есть решение уравнения (c2- a2) a2 = (c2- b2) b2 . Тогда c2= – (a2+ b2) есть решение уравнения (c2+ a2) a2 = (c2+ b2) b2. Это означает, что из 2-х равных прямоугольных треугольников, равными катетами можно образовать квадрат – основание куба. Из 12 равных прямоугольных треугольников, равными катетами можно образовать куб. В зависимости от длины катета можно образовать различные кубы и одновременно рубики.
6. Мы не понимали смысла сложения и умножения 1(единиц). Если имеются 9 мужчин и 9 женщин, то 9 + 9 =18 человек. 10 мужчин и 9 женщин, то 10 + 9 =19 человек, 10 мужчин и 10 женщин, то 10 +10 =20 человек, 11 мужчин и 10 женщин, то 11 +10 =21 человек. Произведения 1(единиц):
111111111 х 111111111= 12345678987654321; 1111111111 х 111111111= 123456789987654321. 0111111111 х 1111111110 = 0123456789876543210; 01111111111 х 1111111110 = 01234567899876543210. Эти операции над 1-разрядными отрицательными и положительными целыми числами.
Если 2 куба поставим в концах отрезка длины 20 единиц. Придадим одному заряд минус, 2-ому плюс, то они одновременно встречаются в середине отрезка, каждый проходя 10 единиц пути, если в пути нет преград: 01234567899876543210. Затем им дадим одноименные заряды, то они займут начальные положения, при этом номера меняются: 98765432100123456789.
Если 2 куба поставим в концах отрезка длины 200 единиц. Придадим одному заряд минус, 2-ому плюс, то они одновременно встречаются в середине отрезка, каждый проходя 100 единиц пути, если в пути нет преград: 00…9999…00. Затем им дадим одноименные заряды, то они займут начальные положения, при этом номера меняются: 99…0000…99.
Если 2 куба поставим в концах отрезка длины 2000 единиц. Придадим одному заряд минус, 2-ому плюс, то они одновременно встречаются в середине отрезка, каждый проходя 1000 единиц пути, если в пути нет преград: 000…999999…000. Затем им дадим одноименные заряды, то они займут начальные положения, при этом номера меняются: 999…000000…999.
Продолжая этот процесс, дойдем до 2секстиллиона единиц, то каждый куб, пройдя, 1секстиллинов пути встречаются в середине. Закон Ньютона о притяжении дополнить отталкиванием. Каждой 1 (единице) пути надо присвоить номер, и начинать с 21 нулей и закончить 21 девятки.
Кода – номера, присваиваемые каждой паре – созданные тела во Вселенной, является произведением целых чисел, составленные из цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Например, каждой человеческой паре присваивается 30 – разрядный код – номер, их сумма 30 девяток. Присвоение кода – номера каждого человека начинается с 30 нулей и заканчивается 30 девятки.
Использования целые числа для нужды Человечества достаточны 3-й степени:
-(0 + 1 + 2 + … + n) + (0 + 1 + 2 + … + n); -(02 + 12 + 22 + … + n2) + (02 + 12 + 22 + … + n2);
-(03 + 13 + 23 + … + n3) + (03 + 13 + 23 + … + n3); -(04 + 14 + 24 + … + n4) + (04 + 14 + 24 + … + n4);
7. Считали, что 1Кб = 1024б, а 1Kб =1000б, 1Kг =1000г, 1м =1000мм. У времени основание 60. 1час= 60мин., 1мин. = 60сек., 1сек = 60миллисек, 1миллисек =60микросек,1микросек =60наносек, 1наносек =60пикосек, 1пикосек =60фемтосек, 1фемтосек =60оттосек, 1оттоосек =60буттосек.
8. В мире кубическая (основание квадратная) система координат, не прямоугольная (не декартовая). Это из того, что X = a, Y = a, X + Y =2a, XY= a x a – основание. X = a, Y = a, Z = a, X + Y+ Z =3a, XYZ= a x a x a.
Прямоугольная (декартовая) система координат получается из свойства целых чисел: Сумма 2 чисел X и Y не меняется от сложения и вычитания числа b, а произведения меняются.
X = a + b, Y = a – b, X + Y =2a, XY= (a + b) x (a – b) = a2- b2.
X = a +√b, Y = a – √b, X + Y =2a, XY= (a + √b) x (a – √b) = a2- b.
X = a + bi, Y = a – bi, X + Y =2a, XY= (a + bi) x (a – bi) = a2+ b2.
X = a +√bi, Y = a – √bi, X + Y =2a, XY= (a + √bi) x (a – √bi) = a2 + b
9. Модель Земли не глобус, а куб и одновременно рубик порядка 24 – поверхности большой квадрат, разделенный на 576 маленьких квадратов, одинакового размера. Длина стороны маленького квадрата 1000 км = 10 ст.6 м. Каждый кв. м. поверхности Земли должно покрыто парами, а мы живем абсурдами.
10. Центр Земли (начало, пупок) и началом времени находится на севере Туркмении (г. Куня-Ургенч, святое место 360), а считали, что начало времени Гринвичем.
11. В мире множество календарей, а должен быть универсальный календарь Сапарова М;
12. Новый год встречать – восход Солнца и вечером новолуние.
13. Носит часы, показывающие 24 часов. Сутки -24 часов начинается и заканчивается восходом Солнца;
14. В мире множество алфавитов и языков, а должен быть единственный цифровой язык.
15 В мире множество наук, а должна быть единственная наука – Арифграф.
16. Человек рождается через 9 месяцев = ¾ года, а день рождения отмечаем через год. Возраст человека определить формулой: (4n)/3, где n – число, делящее на 3 – через 3 года прибавить 1лет = 9 месяцев.
17.В Периодической системе химических элементов Д. И. Менделеева каждый химический элемент живой организм, все деньги – бумажные, металлические также живые организмы, то что едим, пьем, дышим и ходим по ними также являются живыми организмами. В этом убедимся, получив величину 1бутто=10ст.-21.
Можете добавлять абсурды и как их исправлять, от этого выиграем, скоро станем вечными и идеальными.
Только один выход – полный переход на 10-ю систему счисления. Если исправим все абсурды, то наши головы – компьютеры будут работать 1000 ст.1000 операции в секунду, и все наши проблемы решены.
Обо всем в teoremaferma.far.ru, опубликовал в блогах и сообществах facebook.com и в группах yandex.ru.

2 Корнеев В.Ф.:

А как вам нравится следующий критерий простоты числа:
число тогда и только тогда простое, когда все числа треугольника Паскаля (единицы не в счёт) с номером строки этого числа делятся на это число.
Так 9 не простое число, потому что 84 не делится на 9. А 7 – простое, потому что все числа 7-ой строки делятся на 7.

Twilight_Sun Reply:
Февраль 8th, 2015 at 0:48

Как-то слишком уж очевидно доказывается : )

Корнеев В.Ф. Reply:
Февраль 8th, 2015 at 8:26

3 Murad:

Каждое целое число куб, поэтому10ст.3n = 500 x 10 ст.3(n-1) + 500 x10ст.3(n-1), где 500 x 103(n-1)нечетных и столько же четных. Целые числа начинаются с 1, а их номера с 0.

4 Вадим:

Мурад, очень интересные выводы и доводы , но не совсем понятно. Хотелось бы узнать подробнее

5 Сергей:

См. о треугольнике Паскаля самое впечатляющее и до 1981 года никому неведомое: Абачиев С. К., Стахов А. П. Треугольник Паскаля и спектр арифметик для цифровых информационных технологий.// Интернет-журнал №Науковедение”. – М.: ИГУПиТ, 2012, Вып 4.

Видео:Треугольник ПаскаляСкачать

Треугольник Паскаля

Треугольник Паскаля — формула, свойства и применение

Как изобрел паскаль треугольник

Видео:Как из треугольника Паскаля сделать ковёр Серпинского?Скачать

Как из треугольника Паскаля сделать ковёр Серпинского?

Основная формула

Строки треугольника обычно нумеруются, начиная со строки n = 0 в верхней части. Записи в каждой строке целочисленные и нумеруются слева, начиная с k = 0, обычно располагаются в шахматном порядке относительно чисел в соседних строчках. Построить фигуру можно следующим образом:

  • В центре верхней части листа ставится цифра «1».
  • В следующем ряду — две единицы слева и справа от центра (получается треугольная форма).
  • В каждой последующей строке ряд будет начинаться и заканчиваться числом «1». Внутренние члены вычисляются путём суммирования двух цифр над ним.

Запись в n строке и k столбце паскалевской фигуры обозначается (n k). Например, уникальная ненулевая запись в самой верхней строке (0 0) = 1. С помощью этого конструкция предыдущего абзаца может быть записана следующим образом, образуя формулу треугольника Паскаля (n k) = (n — 1 k-1) + (n — 1 k), для любого неотрицательного целого числа n и любого целого числа k от 0 до n включительно. Трёхмерная версия называется пирамидой или тетраэдром, а общие — симплексами.

Видео:Как считали число пи? [Veritasium]Скачать

Как считали число пи? [Veritasium]

История открытия

Как изобрел паскаль треугольник

Паскаль ввёл в действие многие ранее недостаточно проверенные способы использования чисел треугольника, и он подробно описал их в, пожалуй, самом раннем из известных математических трактатов, специально посвящённых этому вопросу, в труде об арифметике Traité du triangle (1665). За столетия до того обсуждение чисел возникло в контексте индийских исследований комбинаторики и биномиальных чисел, а у греков были работы по «фигурным числам».

Из более поздних источников видно, что биномиальные коэффициенты и аддитивная формула для их генерации были известны ещё до II века до нашей эры по работам Пингала. К сожалению, бо́льшая часть трудов была утеряна. Варахамихира около 505 года дал чёткое описание аддитивной формулы, а более подробное объяснение того же правила было дано Халаюдхой (около 975 года). Он также объяснил неясные ссылки на Меру-прастаара, лестницы у горы Меру, дав первое сохранившееся определение расположению этих чисел, представленных в виде треугольника.

Примерно в 850 году джайнский математик Махавира вывел другую формулу для биномиальных коэффициентов, используя умножение, эквивалентное современной формуле. В 1068 году Бхаттотпала во время своей исследовательской деятельности вычислил четыре столбца первых шестнадцати строк. Он был первым признанным математиком, который уравнял аддитивные и мультипликативные формулы для этих чисел.

Как изобрел паскаль треугольник

Примерно в то же время персидский учёный Аль-Караджи (953–1029) написал книгу (на данный момент утраченную), в которой содержалось первое описание треугольника Паскаля. Позднее работа была переписана персидским поэтом, астрономом и математиком Омаром Хайямом (1048–1131). Таким образом, в Иране фигура упоминается как треугольник Хайяма.

Известно несколько теорем, связанных с этой темой, включая биномы. Хайям использовал метод нахождения n-x корней, основанный на биномиальном разложении и, следовательно, на одноимённых коэффициентах. Треугольник был известен в Китае в начале XI века благодаря работе китайского математика Цзя Сианя (1010–1070). В XIII веке Ян Хуэй (1238–1298) представил этот способ, и поэтому в Китае он до сих пор называется треугольником Ян Хуэя.

На западе биномиальные коэффициенты были рассчитаны Жерсонидом в начале XIV века, он использовал мультипликативную формулу. Петрус Апиан (1495–1552) опубликовал полный треугольник на обложке своей книги примерно в 1527 году. Это была первая печатная версия фигуры в Европе. Майкл Стифель представил эту тему как таблицу фигурных тел в 1544 году.

В Италии паскалевский треугольник зовут другим именем, в честь итальянского алгебраиста Никколо Фонтана Тарталья (1500–1577). Вообще, современное имя фигура приобрела благодаря Пьеру Раймонду до Монтрмору (1708), который назвал треугольник «Таблица Паскаля для сочетаний» (дословно: Таблица мистера Паскаля для комбинаций) и Абрахамом Муавром (1730).

Видео:Как треугольник Паскаля поможет умножать без калькулятораСкачать

Как треугольник Паскаля поможет умножать без калькулятора

Отличительные черты

Треугольник Паскаля и его свойства — тема довольно обширная. Главное, в нём содержится множество моделей чисел. Обзор следует начать с простого — ряды:

Как изобрел паскаль треугольник

  • Сумма элементов одной строки в два раза больше суммы строки, предшествующей ей. Например, строка 0 (самая верхняя) имеет значение 1, строчка 1–2, а 2 имеет значение 4 и т. д. Это потому что каждый элемент в строке производит два элемента в следующем ряду: один слева и один справа. Сумма элементов строки n равна 2 n .
  • Принимая произведение элементов в каждой строке, последовательность продуктов можно связать с основанием натурального логарифма.
  • В треугольнике Паскаля через бесконечный ряд Нилаканты можно найти число Пи.
  • Значение строки, если каждая запись считается десятичным знаком (имеется в виду, что числа больше 9 переносятся соответственно), является степенью 11 (11 n для строки n). Таким образом, в строке 2 ⟨1, 2, 1⟩ становится 11 2 , равно как ⟨1, 5, 10, 10, 5, 1⟩ в строке пять становится (после переноса) 161, 051, что составляет 11 5 . Это свойство объясняется установкой x = 10 в биномиальном разложении (x + 1) n и корректировкой значений в десятичной системе.
  • Некоторые числа в треугольнике Паскаля соотносятся с числами в треугольнике Лозанича.
  • Сумма квадратов элементов строки n равна среднему элементу строки 2 n. Например, 1 2 + 4 2 + 6 2 + 4 2 + 1 2 = 70.
  • В любой строчке n, где n является чётным, средний член за вычетом члена в двух точках слева равен каталонскому числу (n / 2 + 1).
  • В строчке р, где р представляет собой простое число, все члены в этой строке, за исключением 1s, являются кратными р.
  • Чётность. Для измерения нечётных терминов в строке n необходимо преобразовать n в двоичную форму. Пусть x будет числом 1s в двоичном представлении. Тогда количество нечётных членов будет 2 х . Эти числа являются значениями в последовательности Гулда.
  • Каждая запись в строке 2 n -1, n ≥ 0, является нечётной.
  • Полярность. Когда элементы строки треугольника Паскаля складываются и вычитаются вместе последовательно, каждая строка со средним числом, означающим строки с нечётным числом целых чисел, даёт 0 в качестве результата.

Как изобрел паскаль треугольник

Диагонали треугольника содержат фигурные числа симплексов. Например:

  • Идущие вдоль левого и правого краёв диагонали содержат только 1.
  • Рядом с рёбрами диагонали содержат натуральные числа по порядку.
  • Двигаясь внутрь, следующая пара содержит треугольные числа по порядку.
  • Следующая пара — тетраэдрические, а следующая пара — числа пятиугольника.

Существуют простые алгоритмы для вычисления всех элементов в строке или диагонали без вычисления других элементов или факториалов.

Видео:РАЗБИРАЕМСЯ С ТРЕУГОЛЬНИКОМ ПАСКАЛЯ ЧАСТЬ II 😊 #shorts #математика #егэ #задачи #егэ2022 #огэ2022Скачать

РАЗБИРАЕМСЯ С ТРЕУГОЛЬНИКОМ ПАСКАЛЯ ЧАСТЬ II 😊 #shorts #математика #егэ #задачи  #егэ2022 #огэ2022

Общие свойства

Как изобрел паскаль треугольник

Образец, полученный путём раскраски только нечётных чисел, очень похож на фрактал, называемый треугольником Серпинского. Это сходство становится всё более точным, так как рассматривается больше строк в пределе, когда число рядов приближается к бесконечности, получающийся в результате шаблон представляет собой фигуру, предполагающую фиксированный периметр. В целом числа могут быть окрашены по-разному в зависимости от того, являются ли они кратными 3, 4 и т. д.

В треугольной части сетки количество кратчайших путей от заданного до верхнего угла треугольника является соответствующей записью в паскалевском треугольнике. На треугольной игровой доске Плинко это распределение должно давать вероятности выигрыша различных призов. Если строки треугольника выровнены по левому краю, диагональные полосы суммируются с числами Фибоначчи.

Благодаря простому построению факториалами можно дать очень простое представление фигуры Паскаля в терминах экспоненциальной матрицы: треугольник — это экспонента матрицы, которая имеет последовательность 1, 2, 3, 4… на её субдиагонали, а все другие точки — 0.

Количество элементов симплексов фигуры можно использовать в качестве справочной таблицы для количества элементов (рёбра и углы) в многогранниках (треугольник, тетраэдр, квадрат и куб).

Шаблон, созданный элементарным клеточным автоматом с использованием правила 60, является в точности паскалевским треугольником с биномиальными коэффициентами, приведёнными по модулю 2. Правило 102 также создаёт этот шаблон, когда завершающие нули опущены. Правило 90 создаёт тот же шаблон, но с пустой ячейкой, разделяющей каждую запись в строках. Фигура может быть расширена до отрицательных номеров строк.

Видео:Треугольник Паскаля алгоритмСкачать

Треугольник Паскаля алгоритм

Секреты треугольника

Как изобрел паскаль треугольник

Конечно, сейчас большинство расчётов для решения задач не в классе можно сделать с помощью онлайн-калькулятора. Как пользоваться треугольником Паскаля и для чего он нужен, обычно рассказывают в школьном курсе математики. Однако его применение может быть гораздо шире, чем принято думать.

Начать следует со скрытых последовательностей. Первые два столбца фигуры не слишком интересны — это только цифры и натуральные числа. Следующий столбец — треугольные числа. Можно думать о них, как о серии точек, необходимых для создания групп треугольников разных размеров.

Точно так же четвёртый столбец — это тетраэдрические числа или треугольные пирамидальные. Как следует из их названия, они представляют собой раскладку точек, необходимых для создания пирамид с треугольными основаниями.

Как изобрел паскаль треугольник

Столбцы строят таким образом, чтобы описывать «симплексы», которые являются просто экстраполяциями идеи тетраэдра в произвольные измерения. Следующий столбец — это 5-симплексные числа, затем 6-симплексные числа и так далее.

Полномочия двойки

Если суммировать каждую строку, получатся степени основания 2 начиная с 2⁰ = 1. Если изобразить это в таблице, то получится следующее:

1
1+1=2
1+2+1=4
1+3+3+1=8
1+4+6+4+1=16
1+5+10+10+5+1=32
1+6+15+20+15+6+1=64

Суммирование строк показывает силы базы 2.

Силы одиннадцати

Треугольник также показывает силы основания 11. Всё, что нужно сделать, это сложить числа в каждом ряду вместе. Как показывает исследовательский опыт, этого достаточно только для первых пяти строк. Сложности начинаются, когда записи состоят из двузначных чисел. Например:

1=11°
11=11¹
121=11²
1331=11³

Оказывается, всё, что нужно сделать — перенести десятки на одно число слева.

Совершенные квадраты

Если утверждать, что 4² — это 6 + 10 = 16, то можно найти идеальные квадраты натуральных чисел в столбце 2, суммируя число справа с числом ниже. Например:

  • 2² → 1 + 3 = 4
  • 3² → 3 + 6
  • 4² → 6 + 10 = 16 и так далее.

Комбинаторные варианты

Как изобрел паскаль треугольник

Чтобы раскрыть скрытую последовательность Фибоначчи, которая на первый взгляд может отсутствовать, нужно суммировать диагонали лево-выровненного паскалевского треугольника. Первые 7 чисел в последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13… найдены. Используя исходную ориентацию, следует заштриховать все нечётные числа, и получится изображение, похожее на знаменитый фрактальный треугольник Серпинского.

Возможно, самое интересное соотношение, найденное в треугольнике — это то, как можно использовать его для поиска комбинаторных чисел, поскольку его первые шесть строк написаны с помощью комбинаторной записи. Поэтому, если нужно рассчитать 4, стоит выбрать 2, затем максимально внимательно посмотреть на пятую строку, третью запись (поскольку счёт с нуля), и будет найден ответ.

Видео:Многочлен полином Жегалкина Метод неопределенных коэффициентов Метод треугольника ПаскаляСкачать

Многочлен полином Жегалкина  Метод неопределенных коэффициентов  Метод треугольника Паскаля

Действия с биномами

Как изобрел паскаль треугольник

Например, есть бином (x + y), и стоит задача повысить его до степени, такой как 2 или 3. Обычно нужно пройти долгий процесс умножения (x + y)² = (x + y)(x + y) и т. д. Если воспользоваться треугольником, решение будет найдено гораздо быстрее. К примеру, нужно расширить (x + y)³. Поскольку следует повышать (x + y) до третьей степени, то необходимо использовать значения в четвёртом ряду фигуры Паскаля (в качестве коэффициентов расширения). Затем заполнить значения x и y. Получится следующее: 1 x³ + 3 x²y + 3 xy² + 1 y³. Степень каждого члена соответствует степени, до которой возводится (x + y).

В виде более удобной формулы этот процесс представлен в теореме бинома. Как известно, всё лучше разбирать на примерах. Итак — (2x – 3)³. Пусть x будет первым слагаемым, а y — вторым. Тогда x = 2x, y = –3, n = 3 и k — целые числа от 0 до n = 3, в этом случае k = . Следует внести эти значения в формулу. Затем заполнить значения для k, которое имеет 4 разные версии, их нужно сложить вместе. Лучше упростить условия с показателями от нуля до единицы.

Как известно, комбинаторные числа взяты из треугольника, поэтому можно просто найти четвёртую строку и подставить в значения 1, 3, 3, 1 соответственно, используя соответствующие цифры Паскаля 1, 3, 3, 1. Последнее — необходимо завершить умножение и упрощение, в итоге должно получиться: 8 x³ — 36 x² + 54x — 27. С помощью этой теоремы можно расширить любой бином до любой степени, не тратя время на умножение.

Биномиальное распределение описывает распределение вероятностей на основе экспериментов, которые можно разделить на группы с двумя возможными исходами. Самый классический пример этого — бросание монеты. Например, есть задача выбросить «решку» — успех с вероятностью p. Тогда выпадение «орла» является случаем «неудачи» и имеет вероятность дополнения 1 – p.

Если спроектировать этот эксперимент с тремя испытаниями, с условием, что нужно узнать вероятность выпадения «решки», можно использовать функцию вероятности массы (pmf) для биномиального распределения, где n — это количество испытаний, а k — это число успехов. Предполагаемая вероятность удачи — 0,5 (р = 0,5). Самое время обратиться к треугольнику, используя комбинаторные числа: 1, 3, 3, 1. Вероятность получить ноль или три «решки» составляет 12,5%, в то время как переворот монеты один или два раза на сторону «орла» — 37,5%. Вот так математика может применяться в жизни.

📺 Видео

Треугольник ПаскаляСкачать

Треугольник Паскаля
Поделиться или сохранить к себе: