Теорема 1. Биссектриса при вершине треугольника делит противоположную сторону на две отрезки, пропорциональные сторонам, прилежащим к данной вершине. То есть если биссектриса при вершине A делит в точке D сторону BC на отрезки BD и CD (Рис.1), то имеет место следующее соотношение:
(1) |
Доказательство (метод площадей 1). Из вершины A опущена биссектриса AD. Построим вершину треугольника AH. Найдем площади треугольников ABD и ACD:
, | (3) |
. | (4) |
Построим следующее соотношение
. | (5) |
С другой стороны, площадь треугольников ABD и ACD можно найти используя следующие формулы:
. | (6) |
. | (7) |
Построим следующее соотношение используя формулы (6) и (7):
. | (8) |
Из формул (5) и (8) получим соотношение (1).
Доказательство (метод площадей 2). С одной стороны, аналогично вышеизложенному имеем соотношение (5). Далее из точки D проведем вершины L и M для треугольников ABD и ACD (Рис.2).
Тогда площади треугольников ABD и ACD можно найти из формул:
, | (9) |
. | (10) |
Построим следующее соотношение
. | (11) |
Из формул (5) и (11) получим соотношение (1).
Доказательство (через теорему синусов). Рассмотрим треугольник ABC. Из точки A проведем биссектрису AD (Рис.3):
Применяя теорему синусов для треугольников ABD и ACD можем записать:
, | (12) |
. | (13) |
Поделив (12) на (13) и учитывая, что ( small sin(180°-delta)=sin delta , ) (см. статью Формулы приведения тригонометрических функций онлайн) получим равенство (1).
Доказательство (через подобие треугольников). Рассмотрим треугольник ABC. Из точки A проведем биссектрису AD (Рис.4). Проведем перпендикуляры из вершин B и C на луч AD и обозначим точки пересечения через L и K.
Рассмотрим треугольники ABL и ACK. Эти треугольники подобны по двум углам (( small ∠ ALB= ∠ AKC ,;; ∠ BAL= ∠ CAK ) ). Тогда имеем:
(14) |
Рассмотрим, далее, треугольники BLD и CKD. Они также подобны поскольку ( small ∠ BLD= ∠ CKD ,) а углы BDL и CDK равны так как они вертикальные. Тогда имеет место следующее соотношение:
(15) |
Из равенств (14) и (15) получаем:
. |
Пример. Даны стороны треугольника ABC: AB=18, AC=6, BC=20. Найти отрезки, полученные делением биссектрисей большой стороны треугольника.
Решение. Поскольку напротив самой большой стороны треугольника находится вершина A, то бисскетриса AD делит сторону BC на отрезки BD и CD. Тогда имеем:
. | (16) |
Обозначим BD=x. Тогда CD=BC−x=20−x. Подставляя данные в уравнение (16), получим:
. | (17) |
Методом перекресного умножения упростим (17) и решим:
Видео:Как доказать, что биссектрисы треугольника пересекаются в одной точке?Скачать
Определение и свойства биссектрисы угла треугольника
В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.
Видео:Свойство биссектрисы треугольника с доказательствомСкачать
Определение биссектрисы угла треугольника
Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.
Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.
Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.
Внешней называется биссектриса угла, смежного с внутренним углом треугольника.
Видео:Построение биссектрисы угла. 7 класс.Скачать
Свойства биссектрисы треугольника
Свойство 1 (теорема о биссектрисе)
Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):
Свойство 2
Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.
Свойство 3
Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).
Свойство 4
Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):
BD 2 = AB ⋅ BC – AD ⋅ DC
Свойство 5
Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.
- CD – внутренняя биссектриса ∠ACB;
- CE – биссектриса угла, смежного с ∠ACB;
- ∠DCE равен 90°, т.е. биссектрисы CD и CE перпендикулярны.
Видео:8 класс, 35 урок, Свойства биссектрисы углаСкачать
Пример задачи
Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.
Решение
Нарисуем чертеж согласно условиям задачи.
Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов).
BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
Следовательно, BC = 10 см.
Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):
Избавляемся от дробей и решаем получившееся уравнение:
8a = 60 – 6a
14a = 60
a ≈ 4,29
Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.
Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4:
AD 2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.
Видео:Формула для биссектрисы треугольникаСкачать
Биссектриса треугольника
Напомним, что биссектрисой угла называют луч, делящий угол пополам.
Определение . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника и соединяющий вершину треугольника с точкой на противоположной стороне (рис 1).
Поскольку в каждом треугольнике имеются три угла, то в каждом треугольнике можно провести три биссектрисы.
На рисунке 1 биссектрисой является отрезок AD .
Теорема 1 . Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника.
Доказательство . Продолжим сторону AC треугольника ABC , изображенного на рисунке 1, за точку A . Проведем через точку B прямую, параллельную биссектрисе AD . Обозначим точку пересечения построенных прямых буквой E (рис. 2).
Докажем, что отрезки AB и AE равны. Для этого заметим, что угол EBA равен углу BAD , поскольку эти углы являются внутренними накрест лежащими при параллельных прямых EB и AD . Заметим также, что угол BEA равен углу DAC , поскольку эти углы являются соответственными при параллельных прямых EB и AD . Таким образом, угол EBA равен углу BEA , откуда вытекает, что треугольник EAB является равнобедренным, и отрезки AB и AE равны.
Отсюда, воспользовавшись теоремой Фалеса, получаем:
что и требовалось доказать.
Следствие 1 . Рассмотрим рисунок 3, на котором изображен тот же треугольник, как и на рисунке 1, но для длин отрезков использованы обозначения
b = |AC|, a = |BC|, c = |AB|, p = |BD|, q = |DC|.
что и требовалось доказать.
Следствие 2 . Рассмотрим рисунок 4, на котором изображены две биссектрисы треугольника, пересекающиеся в точке O .
Тогда справедлива формула:
что и требовалось доказать.
Теорема 2 . Рассмотрим рисунок 5, который практически совпадает с рисунком 2.
Тогда для длины биссектрисы справедлива формула:
Доказательство . Из рисунка 5 следует формула
Если воспользоваться этой формулой, то из подобия треугольников ADC и EBC , получаем:
что и требовалось доказать.
Теорема 3 . Длину биссектрисы треугольника (рис.6) можно найти по формуле:
Доказательство . Рассмотрим рисунок 6
откуда с помощью Теоремы 2 получаем:
что и требовалось доказать.
Задача . Из вершины C треугольника ABC (рис.7) проведена биссектриса CD и высота CE .
Доказать, что выполнено равенство:
Решение . Поскольку CD – биссектриса угла ACB , то
Поскольку CE – высота, то
что и требовалось доказать.
Из решения этой задачи вытекает простое следствие.
Следствие . Длины биссектрисы CD и высоты CE связаны следующей формулой:
💥 Видео
Теорема о биссектрисе угла треугольника | Осторожно, спойлер! | Борис Трушин |Скачать
Построение биссектрисы углаСкачать
Биссектриса углаСкачать
Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Высота, биссектриса, медиана. 7 класс.Скачать
Построение биссектрисы углаСкачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Построение биссектрисы в треугольникеСкачать
Пересечение биссектрис треугольника в одной точке, Геометрия 7 классСкачать
Биссектриса угла. Геометрия 7 класс.Скачать
СВОЙСТВО БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Теорема о свойстве биссектрисы внешнего угла треугольника ДоказательствоСкачать
№535. Докажите, что биссектриса треугольника делит противоположную сторону на отрезки,Скачать
Теорема о свойстве биссектрисы внутреннего угла треугольника ДоказательствоСкачать