- Ваш ответ
- Похожие вопросы
- К двум окружностям касающимся внешним образом проведена общая касательная
- Две окружности на плоскости. Общие касательные к двум окружностям
- Взаимное расположение двух окружностей
- Формулы для длин общих касательных и общей хорды двух окружностей
- Доказательства формул для длин общих касательных и общей хорды двух окружностей
- 🎦 Видео
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Ваш ответ
Видео:Внешняя касательная к двум окружностямСкачать

Похожие вопросы
- Все категории
- экономические 43,282
- гуманитарные 33,619
- юридические 17,900
- школьный раздел 607,029
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Касающиеся внешним образом окружности и две общие касательные к нимСкачать

К двум окружностям касающимся внешним образом проведена общая касательная
Две окружности касаются внешним образом в точке A, через которую проведена их общая касательная, на которой отмечена точка B. Через точку B проведены две прямые: одна пересекает первую окружность в точках K и L (точка K находится между B и L), а другая — вторую окружность в точках M и N (точка M находится между B и N). Прямые KN и LM пересекаются в точке P.
а) Докажите, что точки K, L, M, N лежат на одной окружности.
б) Найдите отношение площадей треугольников KLP и MNP, если BL = 9, BM = 5, AB = 6.
а) Заметим, что по теореме о квадрате касательной
Значит, треугольники BKM и BNL подобны по двум пропорциональным сторонам и углу между ними, причем Отсюда 
Следовательно, четырехугольник KLNM вписанный, что и требовалось доказать.
б) Треугольники KPL и MPN подобны по двум углам, поэтому отношение их площадей равно квадрату коэффициента подобия, то есть Пусть KL = x, MN = y, тогда по теореме о квадрате касательной получаем: 
Отсюда 
 
Таким образом,
Ответ: 
| Критерии оценивания выполнения задания | Баллы | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Имеется верное доказательство утверждения пункта а и обоснованно получен верный ответ в пункте б | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Получен обоснованный ответ в пункте б имеется верное доказательство утверждения пункта а и при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Имеется верное доказательство утверждения пункта а при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки. Видео:Две окружности соприкасаются внешним образом. к ним...Задача.Скачать  Две окружности на плоскости. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|  Взаимное расположение двух окружностей | 
|  Общие касательные к двум окружностям | 
|  Формулы для длин общих касательных и общей хорды | 
|  Доказательства формул для длин общих касательных и общей хорды | 
Видео:ОГЭ по математике. Задача 26Скачать

Взаимное расположение двух окружностей
| Фигура | Рисунок | Свойства | 
| Две окружности на плоскости |  | |
| Каждая из окружностей лежит вне другой |  | |
| Внешнее касание двух окружностей |  | |
| Внутреннее касание двух окружностей |  | |
| Окружности пересекаются в двух точках |  |  | 
| Каждая из окружностей лежит вне другой | ||
|  | ||
| Внешнее касание двух окружностей | ||
|  | ||
| Внутреннее касание двух окружностей | ||
|  | ||
| Окружности пересекаются в двух точках | ||
|  | ||
|  | ||
| Каждая из окружностей лежит вне другой | ||
|  Расстояние между центрами окружностей больше суммы их радиусов | ||
| Внешнее касание двух окружностей | ||
|  Расстояние между центрами окружностей равно сумме их радиусов | ||
| Внутреннее касание двух окружностей | ||
| Окружности пересекаются в двух точках | ||
|  Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов r1 – r2 лежит внутри другой | ||
| Внутренняя касательная к двум окружностям |  | |
| Внутреннее касание двух окружностей |  | |
| Окружности пересекаются в двух точках |  | |
| Внешнее касание двух окружностей |  | |
|  | ||
|  | ||
| Внешняя касательная к двум окружностям | |
|  | |
| Внутренняя касательная к двум окружностям | |
|  | |
| Внутреннее касание двух окружностей | |
|  | |
| Окружности пересекаются в двух точках | |
|  | |
| Внешнее касание двух окружностей | |
|  | |
|  | |
| Каждая из окружностей лежит вне другой | |
|  | |
| Внешняя касательная к двум окружностям | |||||||||||||||||||||
| Внутренняя касательная к двум окружностям | |||||||||||||||||||||
| Внутреннее касание двух окружностей | |||||||||||||||||||||
| Окружности пересекаются в двух точках | |||||||||||||||||||||
| Внешнее касание двух окружностей | |||||||||||||||||||||
| Каждая из окружностей лежит вне другой | |||||||||||||||||||||
| Фигура | Рисунок | Формула | ||||||||||||
| Внешняя касательная к двум окружностям |  | |||||||||||||
| Внутренняя касательная к двум окружностям |  | |||||||||||||
| Общая хорда двух пересекающихся окружностей |  | |||||||||||||
| Внешняя касательная к двум окружностям | ||||
|  | ||||
| Внутренняя касательная к двум окружностям | ||||
|  | ||||
| Общая хорда двух пересекающихся окружностей | ||||
|  | ||||
| Внешняя касательная к двум окружностям | 
| Внутренняя касательная к двум окружностям | 
| Общая хорда двух пересекающихся окружностей | 
|  Длина общей хорды двух окружностей вычисляется по формуле Видео:К двум окружностям проведены общие касательныеСкачать  Доказательства формул для длин общих касательных и общей хорды двух окружностейУтверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3, 🎦 ВидеоПостроение общей касательной к двум окружностямСкачать  Построение общей внешней касательной к двум окружностямСкачать  ТОП-3 конструкции с окружностями для №16 из ЕГЭ 2023 по математикеСкачать  Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать  Геометрия Окружность радиуса 4 касается внешним образом второй окружности в точке B. ОбщаяСкачать  Задача поколения ЕГЭСкачать  Задание 26 Две окружности, внешнее касаниеСкачать  Пара касающихся окружностей | Осторожно, спойлер! | Борис Трушин |Скачать  Касательные к окружностиСкачать  ЕГЭ задание 16Скачать  Построение касательной двум окружностям внешнего касанияСкачать  Геометрия. Задача. Окружности. Касательные. Радиус.Скачать  Планиметрия. Две касающиеся окружности с общей касательной. Задание 16 (41)Скачать  | 

























