- Задача
- Подсказка 1
- Подсказка 2
- Решение
- Послесловие
- Прямоугольник в треугольнике
- Модульное оригами из треугольников
- Что такое треугольный модуль
- Модуль-треугольник
- Три модели в технике модульного оригами
- Китайский мини-дракон
- Лебедь
- Историческая справка
- Какие ещё бывают треугольники-оригами
- «Двойной треугольник»
- Солдатское письмо
- 🎥 Видео
Видео:Из треугольника прямоугольник.#ShortsСкачать
Задача
а) Разрежьте произвольный треугольник на несколько кусочков так, чтобы из них можно было сложить прямоугольник.
б) Разрежьте произвольный прямоугольник на несколько кусочков так, чтобы из них можно было сложить квадрат.
в) Разрежьте два произвольных квадрата на несколько кусочков так, чтобы из них можно было сложить один большой квадрат.
Видео:Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать
Подсказка 1
б) Сначала составьте из произвольного прямоугольника такой прямоугольник, отношение большей стороны которого к меньшей не превышает четырех.
в) Используйте теорему Пифагора.
Видео:Как получить из треугольника прямоугольник? Легко! | Геометрическая задачаСкачать
Подсказка 2
а) Проведите высоту или среднюю линию.
б) Наложите прямоугольник на квадрат, который должен получиться, и проведите «диагональ».
в) Приложите квадраты друг к другу, на стороне большего квадрата отмерьте отрезок, равный длине меньшего квадрата, после чего соедините ее с «противоположными» вершинами каждого из квадратов (см. рис. 1).
Видео:Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать
Решение
а) Пусть дан произвольный треугольник ABC. Проведём среднюю линию MN параллельно стороне AB, а в полученном треугольнике CMN опустим высоту CD. Кроме того, опустим на прямую MN перпендикуляры AK и BL. Тогда легко видеть, что ∆AKM = ∆CDM и ∆BLN = ∆CDN как прямоугольные треугольники, у которых равны соответствующие пара сторон и пара углов.
Отсюда вытекает метод разрезания данного треугольника и последующего перекладывания кусочков. Именно, проведём разрезы по отрезкам MN и CD. После этого переложим треугольники CDM и CDN на место треугольников AKM и BLN соответственно, как показано на рис. 2. Мы получили прямоугольник AKLB, как того и требовалось в задаче.
Отметим, что этот метод не сработает, если один из углов CAB или CBA — тупой. Так происходит из-за того, что в этом случае высота CD не лежит внутри треугольника CMN. Но это не слишком страшно: если проводить среднюю линию параллельно самой длинной стороне исходного треугольника, то в отсечённом треугольнике мы будем опускать высоту из тупого угла, а она обязательно будет лежать внутри треугольника.
б) Пусть дан прямоугольник ABCD, стороны которого AD и AB равны a и b соответственно, причём a > b. Тогда площадь того квадрата, который мы хотим получить в итоге, должна быть равной ab. Следовательно, длина стороны квадрата составляет √ab, что меньше, чем AD, но больше, чем AB.
Построим квадрат APQR, равный искомому, таким образом, чтобы точка B лежала на отрезке AP, а точка R — на отрезке AD. Пусть PD пересекает отрезки BC и QR в точках M и N соответственно. Тогда легко видеть, что треугольники PBM, PAD и NRD подобны, а кроме того, BP = (√ab – b) и RD = (a – √ab). Значит,
Следовательно, ∆PBM = ∆NRD по двум сторонам и углу между ними. Также отсюда несложно вывести равенства PQ = MC и NQ = CD, а значит, ∆PQN = ∆MCD тоже по двум сторонам и углу между ними.
Из всех приведённых рассуждений вытекает метод разрезания. Именно, сначала мы откладываем на сторонах AD и BC отрезки AR и CM, длины которых равны √ab (о том, как строить отрезки вида √ab, см. задачу «Правильные многоугольники» — врезку в разделе «Решение»). Далее, восстанавливаем перпендикуляр к отрезку AD в точке R. Теперь осталось только отрезать треугольники MCD и NRD и переложить их так, как показано на рис. 3.
Отметим, что для того, чтобы этим методом можно было воспользоваться, требуется, чтобы точка M оказалась внутри отрезка BK (иначе не весь треугольник NRD содержится внутри прямоугольника ABCD). То есть необходимо, чтобы
Если это условие не выполняется, то сначала нужно сделать данный прямоугольник более широким и менее длинным. Для этого достаточно разрезать его пополам и переложить кусочки так, как показано на рис. 4. Ясно, что после проведения такой операции отношение большей стороны к меньшей уменьшится в четыре раза. А значит, проделывая её достаточно большое число раз, в конце концов мы получим прямоугольник, к которому применимо разрезание с рис. 3.
в) Рассмотрим два данных квадрата ABCD и DPQR, приложив их друг к другу так, чтобы они пересекались по стороне CD меньшего квадрата и имели общую вершину D. Будем считать, что PD = a и AB = b, причём, как мы уже отмечали, a > b. Тогда на стороне DR большего квадрата можно рассмотреть такую точку M, что MR = AB. По теореме Пифагора .
Пусть прямые, проходящие через точки B и Q параллельно прямым MQ и BM соответственно, пересекаются в точке N. Тогда четырёхугольник BMQN является параллелограммом, а так как у него все стороны равны, то это ромб. Но ∆BAM = ∆MRQ по трём сторонам, откуда следует (учитывая, что углы BAM и MRQ прямые), что . Таким образом, BMQN — квадрат. А так как его площадь равна (a 2 + b 2 ), то это именно тот квадрат, который нам надо получить.
Для того чтобы перейти к разрезанию, осталось заметить, что ∆BAM = ∆MRQ = ∆BCN = ∆NPQ. После этого то, что нужно сделать, становится очевидным: необходимо отрезать треугольники BAM и MRQ и переложить их так, как изображено на рис. 5.
Видео:Как разрезать треугольник по двум прямым на три части, из которых можно сложить прямоугольник?Скачать
Послесловие
Прорешав предложенные задачи, читатель, вполне возможно, задумается над таким вопросом: а когда вообще можно один данный многоугольник разрезать прямыми линиями на конечное число таких кусочков, из которых складывается другой данный многоугольник? Немножко поразмыслив, он поймёт, что как минимум необходимо, чтобы площади этих многоугольников были равны. Таким образом, исходный вопрос превращается в следующий: правда ли, что если два многоугольника имеют одинаковую площадь, то один из них можно разрезать на кусочки, из которых складывается второй (это свойство двух многоугольников называется равносоставленностью)? Оказывается, это действительно так, и об этом нам говорит теорема Бойяи—Гервина, доказанная в 30-х годах XIX века. Более точно, её формулировка заключается вот в чём.
Теорема Бойяи—Гервина. Два многоугольника равновелики тогда и только тогда, когда они равносоставлены.
Идея доказательства этого замечательного результата заключается в следующем. Во-первых, мы будем доказывать не само утверждение теоремы, а то, что каждый из двух данных равновеликих многоугольников можно разрезать на кусочки, из которых складывается квадрат той же площади. Для этого сначала мы разобьём каждый из многоугольников на треугольники (такое разбиение называется триангуляцией). А потом каждый треугольничек превратим в квадратик (например, при помощи метода, описанного в пунктах а) и б) настоящей задачи). Осталось сложить из большого количества маленьких квадратиков один большой — это мы умеем делать благодаря пункту в).
Аналогичный вопрос для многогранников составляет одну из знаменитых проблем Давида Гильберта (третью), представленных им в докладе на II Международном конгрессе математиков в Париже в 1900 году. Характерно, что ответ на него оказался отрицательным. Уже рассмотрение двух таких простейших многогранников, как куб и правильный тетраэдр, показывает, что ни один из них не получается разрезать на конечное число частей так, чтобы из них составлялся другой. И это не случайно — подобного разрезания просто не существует.
Решение третьей проблемы Гильберта было получено одним из его учеников — Максом Деном — уже в 1901 году. Ден обнаружил инвариантную величину, которая не изменялась при разрезании многогранников на кусочки и складывании из них новых фигур. Однако эта величина оказалась различной для некоторых многогранников (в частности, куба и правильного тетраэдра). Последнее обстоятельство явно указывает на тот факт, что эти многогранники равносоставленными не являются.
Видео:Площадь треугольника. Как найти площадь треугольника?Скачать
Прямоугольник в треугольнике
Казалось бы — самый простой случай: в треугольник вписан прямоугольник. Но почему-то нигде не приводятся общие формулы! Только частные численные задачи. Если же рассматривать задачу в общем виде, то появится нечто очень красивое и неожиданное. В основе лежит параметр А, который я бы назвал Параметром Герона. Придумать подобные компактные тождества немыслимо, а произвести расчёты по формулам — раз плюнуть.
Из выражения для длины прямоугольника L, что синей рамочке на рисунке, методом дифференциального исчисления легко находятся уже габариты прямоугольника с наибольшей площадью. Высота такого оптимального элемента Н равна половине высоты треугольника (то есть перпендикуляра, опущенного с вершины В на основание АС). Длина L равна половине основания, то есть b/2. Отсюда ясно, что площадь наибольшего треугольника, вписанного в треугольник, равна половине площади исходного треугольника АВС. Геометрически построение прямоугольника наибольшей площади элементарное: строится средняя линия треугольника (она параллельна стороне АС) и из точек пересечения с боковыми сторонами опускаются вниз перпендикуляры. Это в геометрии давно известно, но из моих формул всё чётко и наглядно выводится.
Формулы я самостоятельно получил еще в седьмом классе и они часто выручали как при решении примеров, так и в строительстве. Каждый уважающий себя интеллектуал должен содержимое рисунка твёрдо знать! Наряду с числами Марсенна, Марсела, теоремами Экобара, Менелая, Виета, распределениями Гаусса, Релея, Гумбеля, Александрова. И ещё многое из всего в математике — величайшей науке всех цивилизаций.
Видео:Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Модульное оригами из треугольников
Существует несколько видов модулей-оригами из бумаги, но треугольники пользуются наибольшей популярностью. Только они позволяют создавать самые разнообразные модели на базе одной и той же «строительной» единицы. Фантазия оригамистов ничем не ограничена – из миниатюрных треугольников можно складывать цветы, животных, вазы и архитектурные объекты, размером от человеческой ладони до двух метров и более.
Видео:Площадь прямоугольного треугольника. Как найти площадь прямоугольного треугольника?Скачать
Что такое треугольный модуль
В основе элемента лежит прямоугольник, размером от 1/4 до 1/36 альбомного листа (формат А4). Соединяются готовые модули за счёт выступающих «уголков» и глубоких «карманчиков», по принципу штекерного разъёма. Плотное прилегание деталей обеспечивает прочность конструкции, но для большей надёжности лучше дополнительно «посадить» их на клей.
Перед тем как делать треугольники для модульного оригами, необходимо нарезать прямоугольные заготовки определённого размера. Допустимо одновременное использование нескольких «калибров»: более крупного для основных объёмов и мелкого – для изящного декора. Разделить лист на модули можно, опираясь на базовую форму «Дверцы». Для самого ходового элемента 1/16 потребуется:
- Сложить лист пополам в продольном направлении.
- Раскрыть.
- Каждую половинку сложить к центральной линии.
- Раскрыть заготовку и повторить те же действия в поперечном направлении. В результате лист будет поделен на 16 частей, размером 7,4х5,3 см.
Получить 1/32 несколько сложнее. Лист А4 сначала в поперечном направлении делят вдоль центральной оси, а затем каждую половину складывают в четыре раза. Получается вдвое больше полос, чем в предыдущем случае. Для продольного направления действия те же, что и при разметке модуля 1/16. В результате образуются прямоугольники, размером 5,3х3,7 см. Нарезать заготовки лучше всего канцелярским ножом, подложив под лист доску, ДВП или специальный макетный коврик.
Получить прямоугольники 1/32 можно и другим способом:
Модуль-треугольник
Сложить из прямоугольной заготовки треугольную деталь не составит никакого труда. Единственное «но» – таких элементов потребуется очень много, в среднем, на одну фигурку высотой 25 – 30 см около 1000 штук. Опытные мастера советуют по мере возможности пополнять запасы деталей, занимаясь другими делами. Например, во время просмотра любимого сериала или прогулки с ребёнком. После некоторой тренировки, складывать треугольники получается, даже не глядя.
Пошаговая инструкция:
- Располагаем исходный прямоугольник длинной стороной к себе.
- Складываем пополам сверху вниз (это важно, поскольку свободный край должен «смотреть» на нас). Заготовку сгибаем вдвое поперёк, чтобы обозначить у неё середину. Раскрываем.
- Правый и левый край опускаем вниз, выравнивая по центру. Переворачиваем.
- Подгибаем внешние уголки заготовки.
- Подворачиваем нижнюю часть до линии основания треугольника.
- Складываем фигуру пополам «долиной».
В итоге получаем классические треугольники для модульного оригами:
Существует несколько типов соединений модульных элементов. Они зависят:
- от выбора стороны, которой одна деталь соединяется с другой;
- от взаимного расположения «уголка» и «карманчика».
Азбука модульного дела:
- У треугольного модуля есть две коротких стороны, расположенных напротив углов в 60° и одна длинная – напротив прямого. На рисунке они обозначены соответственно, КСН и ДСН.
- Соединение на коротких сторонах (КСН).
- То же, но на длинных (ДСН).
- «Змейка», когда модульные элементы соединяются один в один.
- Классическое соединение «две длинных стороны и одна короткая».
- «Все короткие».
Видео:Площадь прямоугольника. Как найти площадь прямоугольника?Скачать
Три модели в технике модульного оригами
Начинающим мастерам не всегда знакомы тонкости «бумажного искусства». Главное при сборке оригами из модулей-треугольников, как и в других видах рукоделия: вышивке, плетении или вязании, не спешить и на каждом этапе чётко следовать схеме. Тогда работа сразу получится аккуратной и прочной, не требуя переделок. Есть и другие значимые моменты:
- Модули необходимо складывать очень точно, иначе изделие будет перекошенным и неряшливым. Чем меньше размер сборочных элементов, тем тоньше выбирают бумагу для них.
- Если «карманчики» трудно раскрываются, можно воспользоваться зубочисткой.
- Начинать знакомство с модульным оригами лучше с лёгких моделей, постепенно переходя к более сложным.
- Склеивание элементов изделия поможет сохранить его на длительный срок и убережёт от разрушения при падении.
- Готовые работы стоит покрыть прозрачным лаком для дерева. Это – хорошая защита от пыли и выцветания, а также возможность делать влажную уборку.
Удачная модель для тех, кто только начинает знакомиться с техникой складывания оригами из маленьких треугольников. Для неё понадобится всего 106 синих модулей и 24 розовых.
Схема «Совы»:
Сборка ведётся на длинных сторонах. 1-й ряд состоит из 16 синих элементов. Начиная со 2-го, добавляем розовые детали для «манишки» совы (12+4).
Общее число элементов в каждом ряду одинаковое. Но соотношение по цветам разное.
3-й ряд: 10 синих и 5 розовых деталей.
4-й ряд: 8 синих и 6 розовых.
Далее модули распределяются в обратной последовательности. Для предпоследнего ряда берём 16 синих деталей, для последнего – 15.
Собрав сову, делаем её характерные «ушки». Они состоят из 3-х деталей, которые крепятся на последний ряд, по тому же принципу, что и остальные. Затем приклеиваем птице глаза и нос из розового модульного элемента.
«Сова» яркого сказочного окраса украсит дом на Хэллоуин или другой тематический праздник. Также она будет эффектно смотреться в детской.
Китайский мини-дракон
Следуя принципу постепенного усложнения моделей, после сверх-простой совы как раз можно перейти к популярному на востоке символу водной стихии. Дракон в Китае издавна был связан с культом плодородия, без его изображений не обходился ни один ритуал вызывания дождя. Кроме того, этот мифический персонаж обозначал принадлежность к высшим слоям общества. Его изображениями разрешалось украшать одежду только аристократии, простолюдинам же, подобная «вольность» была недоступна.
Для того, чтобы сделать мини-дракона, понадобится 515 бумажных треугольников-оригами 1/16:
Голова
Начинаем работу с головы. Схема её сборки:
Двигаемся от «подбородка» вверх.
Ряд | Количество модулей |
1 | 3 С |
2 | 4 С |
3 | 3 С |
4 | 4 С |
5 | 5 С |
6 | 4 С |
7 | 1 С+1 Ж+1 С+1 Ж+1 С |
8 | 6 С |
9 | 5 С |
10 | 6 С |
Сборку производим сверху вниз. Завершив 10 ряд, делаем шипы, венчающие драконью голову. Собираем их симметрично по схеме, сделав пропуск посредине. Переворачиваем фигуру и слегка изгибаем – голова почти готова. Из красной бумаги вырезаем раздвоенный язык и приклеиваем по центру последнего ряда с изнанки.
Туловище дракона
Гибкое тело мифического животного представляет собой цепочку из жёлтых и синих деталей. Вначале их три: С+Ж+С. К первой жёлтой детали в следующем ряду добавляем ещё две, надевая на каждый уголок.
Затем вновь повторяем начальное расположение треугольников и так продолжаем, пока не наберём примерно 88 рядов. Для тела потребуется 176 синих и 262 жёлтых элемента. Закончив сборку, к голове с обратной стороны в районе глаз добавляют два синих крепёжных модуля.
Изготавливаем 4 лапки из 5 синих деталей. Присоединяем заготовки к туловищу в точках опоры. Предварительно изгибаем его, наподобие американских горок.
Лебедь
Это одна из самых красивых и востребованных моделей. Лебедь-оригами из модульных треугольников легко превращается в элегантную вазу для сухоцветов, хотя и сам по себе он великолепен.
Для двухцветной модели, представленной в следующем видео-уроке, понадобится 1522 модуля, размером 1/32:
Видео:Задача по геометрии на прямоугольный треугольник и теорему Пифагора из реального ОГЭ по математикеСкачать
Историческая справка
Под модульным оригами чаще всего подразумевают именно фигуры из маленьких треугольников. Однако существуют ещё шары-кусудамы и многогранники из так называемых «модулей Сонобе.» Обе разновидности родом из Японии. Кусудама – бумажный шар из нескольких сшитых или склеенных между собой секций, известна со времён Средневековья. Её наполняли ароматными травами, выделявшими целебные эфирные масла, и развешивали в доме для защиты от инфекционных заболеваний, а также создания успокаивающей атмосферы.
Многогранники из модулей в виде изогнутого особым образом параллелограмма, были разработаны в 1960-х годах японским оригамистом Мицунобу Сонобе и названы в его честь. Идею мастер, скорее всего, позаимствовал у своего предшественника Хаято Охоко, в 1734 году впервые описавшего и представившего схему трёхмерного куба из нескольких одинаковых элементов.
Оригами из треугольных модулей – изобретение китайских мастеров. Его истоки точно неизвестны, но западному миру пришлось познакомиться с этой уникальной техникой при весьма печальных обстоятельствах. В 1993 году на борту грузового судна Golden Venture в Соединённые Штаты прибыли 286 нелегальных эмигрантов из Китая. «Новая родина» встретила их неласково. Когда корабль сел на мель неподалёку от нью-йоркского пляжа Рокуэй-Бич, пассажиры попытались добраться до «земли обетованной» вплавь, причём 10 из них утонули. Остальные нелегалы были арестованы Службой иммиграции и натурализации (INS) и разбросаны по тюрьмам в разных концах Америки.
В ожидании ответа на просьбу о предоставлении убежища, китайские заключённые коротали время за национальными видами рукоделия, в том числе и оригами, которое на пиньине называется «жэжи». В процессе работы нелегалы изобрели треугольные модули, создавая из них масштабные фигуры: вазы, лебедей, ананасы и корабли. Вместо обычной бумаги использовали обложки старых журналов и газет. Позднее, когда техника получила распространение, для модульных элементов нередко брали китайские банкноты.
Скульптуры в технике модульного оригами заключённые дарили тем, кто оказывал им поддержку или продавали, чтобы собрать средства на юридические услуги. Часть их представлена на передвижной выставке «Полёт свободы», организованной Американским иммиграционным центром.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Какие ещё бывают треугольники-оригами
Треугольные модули – первое, что приходит на ум, когда речь идёт о технике оригами. Но существуют и другие элементы с аналогичным названием, с которыми желательно познакомиться, чтобы не путаться в понятиях.
«Двойной треугольник»
Китайские модули-оригами иногда путают с популярной базовой фигурой, не имеющей к ним никакого отношения. «Двойной треугольник» или «Водяная бомбочка» применяется в классическом японском бумагоделии, как основа для многих известных моделей. Среди них «Рыбка», «Лягушка», «Кролик» и так далее.
Складывается базовый треугольник оригами по следующей схеме:
Солдатское письмо
Знаменитые «фронтовые треугольники», которые посылали бойцы с передовой во время Великой Отечественной войны, как ни удивительно, тоже сложены в технике оригами. Такой способ позволял обходиться без конверта – адрес писали на внешней стороне листа, а сообщение на внутренней. При этом письмо не мялось и рвалось, каждая его строчка была сохранена для близких людей, с нетерпением ожидавших весточки.
Солдатские треугольники дарили радость, служили лучшим свидетельством того, что их автор жив. А вот письма в настоящих конвертах отправляли только официальные инстанции, извещая о гибели или пропаже без вести. Чтобы проникнуться атмосферой тех лет и сберечь память о подвиге народа в борьбе с немецким нацизмом, «Солдатские треугольники-оригами» часто изготавливают ко Дню победы.
🎥 Видео
КАК РАЗМЕТИТЬ ФУНДАМЕНТ СВОИМИ РУКАМИ / КАК НАЙТИ ДИАГОНАЛИ ФУНДАМЕНТА / КАК ВЫСТАВИТЬ ПРЯМОЙ УГОЛ /Скачать
Как сложить доллар треугольником. Магия денег. Привлекаем деньги. Видео ютуб. Канал ТУТСИ.Скачать
Прямоугольник. 8 класс.Скачать
7 класс, 32 урок, Остроугольный, прямоугольный и тупоугольный треугольникиСкачать
Короткие загадки, которые осилит не каждый профессорСкачать
Как я использую дюймы в пэчворке и не пересчитываюСкачать
Задача на логику как разрезать на две части и получить квадрат?Скачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Конверт треугольник как сделать. Военный конверт.Скачать