2018-05-14
Найти индукцию магнитного поля в центре контура, имеющего вид прямоугольника, если его диагональ $d = 16 см$, угол между диагоналями $phi = 30^$ и ток в контуре $I = 5,0 А$.
Мы знаем, что магнитная индукция, связанная с проводником постоянного тока в любой точке, на перпендикулярном расстоянии от него дается:
$B = frac < mu_> frac ( sin theta_ + sin theta_)$,
где $r$ — перпендикулярное расстояние от провода до рассматриваемой точки, а $theta_$ — угол между линией, соединяющий верхнюю точку прямого провода с рассматриваемой точкой и перпендикуляр, опущенный на провод, а $theta_$, из нижней точки провода.
Следовательно, величина полной магнитной индукции в O,
- Закон Био-Савара-Лапласа.
- Расчёт магнитных полей с помощью закона Био–Савара–Лапласа. Магнитное поле в веществе (Главы 3-4 учебного пособия по общей физике)
- Страницы работы
- Содержание работы
- 3.4. Расчёт магнитных полей с помощью закона
- Био–Савара–Лапласа
- 3.4.1. Индукция магнитного поля отрезка прямолинейного проводника с током
- 3.4.2. Индукция магнитного поля бесконечно длинного
- прямолинейного проводника с током
- 3.4.3. Индукция магнитного поля в центре квадрата
- 3.4.4. Расчёт магнитного поля замкнутого кругового тока
- (витка с током).
- 🔥 Видео
Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать
Закон Био-Савара-Лапласа.
Магнитная индукция , создаваемое элементом тока на расстоянии от него, обратно пропорционально квадрату расстояния и прямо пропорционально величине элемента тока и синусу угла a между векторами и (рис.8)
или .
Чтобы получить результирующий вектор для денного конкретного случая производится интегрирование. Ниже при
1.Магнитная индукция проводника с током (рис.9)
2.Магнитная индукция бесконечно длинного проводника с током
3.Магнитная индукция в центре прямоугольного контура с током
a и b — длины сторон контура.
4.Магнитная индукция кругового контура с током на оси контура (рис.10)
— магнитный момент кругового витка стоком; S — площадь рамки стоком, R — радиус контура, h — расстояние от центра витка до рассматриваемой точки.
5.Магнитная индукция кругового контура с током на оси контура
6.Магнитная индукция соленоида. Соленоидом называется цилиндрическая катушка стоком состоящая из большого числа витков проволоки, которые образуют винтовую линию.
n – число витков соленоида на единицу длины.
7.Магнитная индукция бесконечно длинного соленоида.
n = N/l
Видео:Физика 9 класс (Урок№19 - Индукция магнитного поля.)Скачать
Расчёт магнитных полей с помощью закона Био–Савара–Лапласа. Магнитное поле в веществе (Главы 3-4 учебного пособия по общей физике)
Страницы работы
Содержание работы
где v – скорость направленного движения свободных носителей заряда. Умножив В на количество свободных носителей заряда в элементе проводника dl, получим индукцию магнитного поля, созданную этим элементом проводника с током,
;
.
Таким образом, индукция магнитного поля, созданного элементом dl проводника с током I на расстоянии r от элемента проводника, определяется выражением
.
Это выражение и представляет собой закон Био–Савара–Лапласа.
Из закона видно, что вектор магнитной индукции dB всегда перпендикулярен плоскости, в ко-торой лежат векторы dl и r. Его направление определяется по правилу правого винта.
Модуль вектора dB определяется из выражения
,
где a – угол между векторами dl и r.
* Здесьj – вектор плотности тока.
Необходимо учесть, что полученное выражение позволяет рассчитать индукцию магнитного поля, созданную одним бесконечно малым элементом проводника dl с током I.
Для того чтобы найти магнитную индукцию, созданную всемпроводником, необходимо использовать принцип суперпозиции, т. е. просуммировать векторы dB, созданные каждым элементом проводника в интересующей нас точке.
Видео:Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать
3.4. Расчёт магнитных полей с помощью закона
Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать
Био–Савара–Лапласа
3.4.1. Индукция магнитного поля отрезка прямолинейного проводника с током
Для всех бесконечно малых элементов dl отрезка векторы dl и r лежат в плоскости листа. Поэтому векторы dB, созданные в выбранной нами точке различными элементами проводника направлены одинаково – перпендикулярно плоскости листа. Следовательно, сложение векторов dB можно заменить сложением их модулей dB.
Из рисунка видно, что r = b/sina
(b – расстояние от проводника до инте-ресующей нас точки), и
.
Тогда индукция, созданная элементом проводника dl, равна
.
Индукция магнитного поля, созданного всем проводником, может быть найдена как интеграл от dB в пределах от a1 до + a2:
Иногда удобнее воспользоваться другим выражением:
(обратите внимание на рисунок, показывающий углы q1 и q2).
Обратите также внимание на то, что если точка расположена так, как показано на следующем рисунке, то q2 меняет знак и формула для расчёта магнитного поля прямолинейного отрезка записывается следующим образом:
.
3.4.2. Индукция магнитного поля бесконечно длинного
прямолинейного проводника с током
Если длина прямого проводника бесконечно велика, то a1 = 0, а a2 = p.
В этом случае индукция магнитного поля, созданного проводником, будет равна
.
Таким образом, индукция магнитного поля, созданного бесконечно длинным проводником прямо пропорциональна току в проводнике и обратно пропорциональна расстоянию от проводника до интересующей нас точки.
Дополнительно рассмотрим магнитное поле, созданное бесконечным проводником, который изогнут под прямым углом.
Ограничимся получением расчётной формулы для точки А, расположенной на продолжении одной из половин проводника.
Участок DB в точке А не создаёт магнитного поля, так как для него a1 и a2 равны 0.
Для участка ВС a1 = 90 0 , a2 = -180 0 . Поэтому индукция, созданная этим участком, равна
.
Таким образом, индукция магнитного поля в точке А равна половине индукции, созданной прямым бесконечно длинным проводником с таким же током.
3.4.3. Индукция магнитного поля в центре квадрата
Рассмотрим квадрат со стороной а, в котором течёт ток I.
Все стороны квадрата создают в его центре одинаковое магнитное поле. Поэтому если индукция, созданная одной стороной, равна В, то магнитная индукция, созданная всеми сторонами, равна 4В.
В рассматриваемом случае a1 = 45 0 , а a2 = 135 0 (см. рисунок).
Индукция магнитного поля, созданного одной стороной, равна:
.
Соответственно индукция магнитного поля, созданного всеми сторонами, равна
.
В показанном на рисунке случае индукция магнитного поля направлена перпендикулярно плоскости квадрата на нас.
3.4.4. Расчёт магнитного поля замкнутого кругового тока
(витка с током).
Пусть радиус витка равен R, а ток в нём – I.
Вначале рассмотрим расчёт поля в центре витка.
Каждый элемент тока будет создавать индукцию, направленную вдоль оси витка. Поэтому, как и в предыдущем случае, сложение dB алгебраическое и
,
(в каждой точке a = 90 0 )
.
Поле на оси витка на расстоянии b от центра витка рассчитывается несколько сложнее. В этом случае векторы dB не параллельны друг другу.
При суммировании составляющие векторов dB, перпендикулярные оси, уничтожаются, а параллельные оси – складываются.
Из рисунка видно, что
;
.
Проинтегрировав это выражение по всему контуру, получаем
.
🔥 Видео
Электромагнитная индукция. ЕГЭ Физика. Николай НьютонСкачать
Галилео. Эксперимент. Электромагнитная индукцияСкачать
Билет №15 "Магнитное поле"Скачать
Электромагнитная индукция. Простыми словамиСкачать
Физика - Магнитное полеСкачать
ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать
Магнитное поле. Магнитная индукция | Физика 11 класс #1 | ИнфоурокСкачать
На самом деле магнитного поля не существует!Скачать
Математика это не ИсламСкачать
Электромагнитная индукция за 1 минутуСкачать
Магнитное поле | Физика 9 класс #34 | ИнфоурокСкачать
Высота в прямоугольном треугольнике. 8 класс.Скачать
Явление электромагнитной индукции | Физика 9 класс #39 | ИнфоурокСкачать
Магнитная индукция в действии вращение медной проволоки #обзорбытовойтехникиСкачать
Магнитная индукция и напряженность магнитного поляСкачать