График ctg на окружности

Функция y = ctg x, её свойства и график

п.1. Развертка котангенса движения точки по числовой окружности в функцию от угла

При движении точки по числовой окружности на горизонтальной касательной, проведенной через точку (0;1), отображаются значения котангенсов соответствующих углов (см. §3 данного справочника).

Рассмотрим, как изменяется котангенс, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=ctgx на этом отрезке.

График ctg на окружности

График ctg на окружности

Если мы продолжим движение по окружности для углов x > 2π, кривые продолжатся вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x главной ветвью графика котангенса.

п.2. Свойства функции y=ctgx

1. Область определения (xnepi k) — множество действительных чисел, кроме точек, в которых (sinx=0) .

2. Функция не ограничена сверху и снизу. Область значений (yinmathbb)

3. Функция нечётная $$ ctg(-x)=-ctgx $$

4. Функция периодическая с периодом π $$ ctg(x+pi k)=ctgx $$

5. Функция стремится к (-infty) при приближении слева к точкам (x=pi k) .
Приближение к точке a слева записывается как (xrightarrow a-0) $$ lim_ ctgx=-infty $$ Функция стремится к (+infty) при приближении справа к точкам (x=pi k) .
Приближение к точке a справа записывается как (xrightarrow a+0) $$ lim_ ctgx=+infty $$ Нули функции (y_=0) достигаются в точках (x_0=fracpi2+pi k)

6. Функция убывает на всей области определения.

7. Функция имеет разрывы в точках (x=pi k) , через эти точки проходят вертикальные асимптоты. На интервалах между асимптотами ((pi k; pi+pi k)) функция непрерывна.

п.3. Примеры

Пример 1. Найдите наименьшее и наибольшее значение функции y=ctgx на заданном промежутке:
График ctg на окружности
a) (left[frac; piright)) $$ y_=lim_ctgx=-infty, y_=ctgleft(fracright)=-frac<sqrt> $$ б) (left(0; fracright]) $$ y_=ctgleft(fracright)=1, y_=lim_ctgx=+infty $$ в) (left[frac; fracright]) $$ y_=ctgleft(fracright)=-1, y_=ctgleft(fracright)=sqrt $$

Пример 2. Решите уравнение:
a) (ctgx=-sqrt)
Бесконечное множество решений: (x=frac+pi k, kinmathbb)

б) (ctgleft(x+fracpi2right)=0)
(x+fracpi2=fracpi2+pi k)
Бесконечное множество решений: (x=pi k, kinmathbb)

в) (ctg(2x)=1)
(2x=fracpi4+pi k)
Бесконечное множество решений: (x=frac+frac, kinmathbb)

Пример 3. Постройте графики функций: a) (y(x)=x^2-2tgxcdot ctgx)

График ctg на окружностиПроизведение (tgxcdot ctgx=1). При этом ограничивается область определения функции (y(x)), т.к. (tgx) и (ctgx) имеют разрывы.
Точки разрыва отмечены на числовой окружности: (xnefrac).

Получаем: $$ begin x^2-2\ xnefrac, kinmathbb end $$ Строим график параболы и выкалываем точки, не входящие в ОДЗ.
График ctg на окружности

График ctg на окружностиСумма (sin^2(tgx)+cos^2(tgx)=1). При этом ограничивается область определения функции (y(x)), т.к. (tgx) имеeт разрывы.
Точки разрыва отмечены на числовой окружности: (xnefrac+pi k).

Получаем: $$ begin 1-x\ xnefrac+pi k, kinmathbb end $$ Строим график прямой и выкалываем точки, не входящие в ОДЗ.
График ctg на окружности

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Значения тангенса и котангенса на тригонометрическом круге

В прошлой статье мы познакомились с тригонометрическим кругом и научились находить значения синуса и косинуса основных углов.

Как же быть с тангенсом и котангенсом ? Об этом и поговорим сегодня.

Где же на тригонометрическом круге оси тангенсов и котангенсов?

Ось тангенсов параллельна оси синусов (имеет тоже направление, что ось синусов) и проходит через точку (1; 0).

Ось котангенсов параллельна оси косинусов (имеет тоже направление, что ось косинусов) и проходит через точку (0; 1).

На каждой из осей располагается вот такая цепочка основных значений тангенса и котангенса: График ctg на окружностиПочему так?

Я думаю, вы легко сообразите и сами. 🙂 Можно по-разному рассуждать. Можете, например, использовать тот факт, что График ctg на окружностии График ctg на окружности

График ctg на окружности

Собственно, картинка за себя сама говорит.

Если не очень все же понятно, разберем примеры:

Пример 1.

Вычислить График ctg на окружности

Находим на круге График ctg на окружности. Эту точку соединяем с точкой (0;0) лучом (начало – точка (0;0)) и смотрим, где этот луч пересекает ось тангенсов. Видим, что График ctg на окружности

Ответ: График ctg на окружности

Пример 2.

Вычислить График ctg на окружности

Находим на круге График ctg на окружности. Точку (0;0) соединяем с указанной точкой лучом. И видим, что луч никогда не пересечет ось тангенсов.

График ctg на окружностине существует.

Ответ: не существует

Пример 3.

Вычислить График ctg на окружности

График ctg на окружности

Находим на круге точку График ctg на окружности(это та же точка, что и График ctg на окружности) и от нее по часовой стрелке (знак минус!) откладываем График ctg на окружности(График ctg на окружности). Куда попадаем? Мы окажемся в точке, что на круге у нас (см. рис.) названа как График ctg на окружности. Эту точку соединяем с точкой (0;0) лучом. Вышли на ось тангенсов в значение График ctg на окружности.

Так значит, График ctg на окружности

Ответ: График ctg на окружности

Пример 4.

Вычислить График ctg на окружности

График ctg на окружности

Поэтому от точки График ctg на окружности(именно там будет График ctg на окружности) откладываем против часовой стрелки График ctg на окружности.

Выходим на ось котангенсов, получаем, что График ctg на окружности

Ответ: График ctg на окружности

Пример 5.

Вычислить График ctg на окружности

Находим на круге График ctg на окружности. Эту точку соединяем с точкой (0; 0). Выходим на ось котангенсов. Видим, что График ctg на окружности

Ответ: График ctg на окружности

График ctg на окружностиТеперь, умея находить по тригонометрическому кругу значения тригонометрических функций (а я надеюсь, что статья, где мы начинали знакомство с кругом и учились вычислять значения синусов и косинусов, вами прочитана…), вы можете пройт и тест по теме «Нахождение значений косинуса, синуса, тангенса и котангенса различных углов».

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Синус и косинус угла на единичной окружности

Впервые мы познакомились с синусом, косинусом и другими тригонометрическими функциями ещё в 8 класс на уроках геометрии, при изучении прямоугольного треугольника. Пусть есть некоторый треуг-ник АВС, у которого∠ С – прямой, а ∠ВАС принимается за α. Тогда sinα – это отношение ВС к АВ, а cosα– это отношение АС к АВ. В свою очередь tgα– это отношение ВС к АС:

С помощью тригонометрических функций удобно было находить стороны прямоугольного треугол-ка. Например, пусть известно, что гипотенуза АВ равна 5, а sinα = 0,8. Тогда из формулы sinα = ВС/АВ легко получить, что

ВС = АВ•sinα = 5•0,8 = 4

Если известно, что cosα = 0,6, то мы сможем найти и второй катет:

АС = АВ•cosα = 5•0,6 = 3

Отдельно заметим, что тангенс угла может быть рассчитан не как отношение двух катетов, а как отношение синуса к косинусу:

tgα = ВС/ АС = (АВ•sinα)/(АВ•cosα) = (sinα)/(cosα)

Отметим на единичной окружности произвольную точку А, которой соответствует некоторый угол α. У этой точки есть свои координаты хА и уА:

Попытаемся определить, чему равны координаты точки А. Для этого обозначим буквой B точку, в которой перпендикуляр, опущенный из А, пересекает горизонтальную ось Ох, и рассмотрим треугольник ОАВ:

Ясно, что ОАВ – это прямоугольный треугольник, ведь∠ АОВ = 90°. Значит, отрезок АВ можно рассчитать по формуле

Но ОА – это радиус единичной окружности. Это значит, что ОА = 1. Тогда

АВ = sinα•ОА = sinα•1 = sinα

С другой стороны, видно, что величина отрезка АВ равна координате уА. Получается, что уА = АВ = sinα, или

Отрезок ОВ также можно найти из прямоугольного треугольника АОВ, используя косинус:

Учитывая, что ОА = 1, а длина ОВ равна координате хА, мы получим следующее:

хА = ОВ = cosα•ОА = cosα•1 = cosα

то есть координата хА равна cos α:

Итак, мы выяснили, что координаты точки, лежащей на единичной окружности, равны синусу и косинусу угла, соответствующего этой точке.

Таким образом, нам удалось дать новое определение синусу и косинусу угла:

Заметим, что в прямоугольном треугольнике углы, помимо самого прямого угла, могут быть только острыми. Поэтому предыдущее определение синуса и косинуса, данное в 8 классе в курсе геометрии, было пригодно лишь для углов из диапазона 0 1 I и II четверть

📸 Видео

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графикиСкачать

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графики

Тригонометрическая окружность tg x и ctg xСкачать

Тригонометрическая окружность tg x и ctg x

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Тригонометрические функции, y=tgx и y=ctgx, их свойства и графики. 10 класс.Скачать

Тригонометрические функции, y=tgx и y=ctgx,  их свойства и графики. 10 класс.

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Построение графиков тригонометрических функций с помощью преобразований. Практ. часть. 10 класс.Скачать

Построение графиков тригонометрических функций с помощью преобразований. Практ. часть. 10 класс.

10 Функции y=tgx и y=ctgxСкачать

10 Функции y=tgx и y=ctgx

Тригонометрические функции и их знакиСкачать

Тригонометрические функции и их знаки

Графики тригонометрических функций y=ctg xСкачать

Графики тригонометрических функций y=ctg x

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис ТрушинСкачать

✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис Трушин

Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

21.6 Получить из графика y=ctg(x) график y=|ctg x|Скачать

21.6 Получить из графика y=ctg(x) график y=|ctg x|

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Алгебра 11 класс (Урок№5 - Свойства и график функции y=tgx и y=ctg x.)Скачать

Алгебра 11 класс (Урок№5 - Свойства и график функции y=tgx и y=ctg x.)
Поделиться или сохранить к себе: