Где на окружности sinx больше 0

Где на окружности sinx больше 0

Где на окружности sinx больше 0

Видео:Решить тригонометрические неравенства sinxСкачать

Решить тригонометрические неравенства sinx

Шаг 1. Введите неравенство

Укажите решение неравенства: sin(x)>=0 (множество решений неравенства)

Решение

Дано неравенство:
$$sin geq 0$$
Чтобы решить это нер-во — надо сначала решить соотвествующее ур-ние:
$$sin = 0$$
Решаем:
Дано уравнение
$$sin = 0$$
— это простейшее тригонометрическое ур-ние

Получим:
$$sin = 0$$
Это ур-ние преобразуется в
$$x = 2 pi n + operatorname$$
$$x = 2 pi n — operatorname + pi$$
Или
$$x = 2 pi n$$
$$x = 2 pi n + pi$$
, где n — любое целое число
$$x_ = 2 pi n$$
$$x_ = 2 pi n + pi$$
$$x_ = 2 pi n$$
$$x_ = 2 pi n + pi$$
Данные корни
$$x_ = 2 pi n$$
$$x_ = 2 pi n + pi$$
являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки:
$$x_ leq x_$$
Возьмём например точку
$$x_ = x_ — frac$$
=
$$2 pi n + — frac$$
=
$$2 pi n — frac$$
подставляем в выражение
$$sin geq 0$$
$$sin<left (2 pi n — frac right )> geq 0$$

Тогда
$$x leq 2 pi n$$
не выполняется
значит одно из решений нашего неравенства будет при:
$$x geq 2 pi n wedge x leq 2 pi n + pi$$

Видео:10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства

Функция y = sin x, её свойства и график

п.1. Развертка ординаты движения точки по числовой окружности в функцию от угла

При движении точки по числовой окружности её ордината является синусом соответствующего угла (см. §2 данного справочника).

Рассмотрим, как изменяется синус, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=sinx на этом отрезке.

Где на окружности sinx больше 0

Если мы продолжим движение по окружности для углов x > 2π, кривая продолжится вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x синусоидой .
Часть синусоиды для 0≤x≤2π называют волной синусоиды .
Часть синусоиды для 0≤x≤π называют полуволной или аркой синусоиды .

п.2. Свойства функции y=sinx

1. Область определения (xinmathbb) — множество действительных чисел.

2. Функция ограничена сверху и снизу

Область значений (yin[-1;1])

3. Функция нечётная

4. Функция периодическая с периодом 2π

5. Максимальные значения (y_=1) достигаются в точках

Минимальные значения (y_=-1) достигаются в точках

Нули функции (y_=sinx_0=0) достигаются в точках (x_0=pi k)

6. Функция возрастает на отрезках

$$ -fracpi2+2pi kleq xleqfracpi2+2pi k $$

Функция убывает на отрезках

$$ fracpi2+2pi kleq xleqfrac+2pi k $$

7. Функция непрерывна.

п.3. Примеры

Пример 1. Найдите наименьшее и наибольшее значение функции y=sinx на отрезке:
Где на окружности sinx больше 0
a) (left[fracpi6; fracright]) $$ y_=sinleft(fracpi6right)=frac12, y_=sinleft(fracpi2right)=1 $$ б) (left[frac; fracright]) $$ y_=sinleft(fracright)=-1, y_=sinleft(fracright)=frac12 $$

Пример 2. Решите уравнение графически:
a) (sinx=3x)
Где на окружности sinx больше 0
Один корень: x = 0

б) (sinx=2x-2pi)
Где на окружности sinx больше 0
Один корень: x = π

в) (sinx-sqrt=0)
(sinx=sqrt)
Где на окружности sinx больше 0
Один корень: x = π

г*) (sinx=left(x-fracpi2right)^2-frac)
(y=left(x-fracpi2right)^2-frac) – парабола ветками вверх, с осью симметрии (x_0=fracpi2) и вершиной (left(fracpi2; -fracright)) (см. §29 справочника для 8 класса)
Где на окружности sinx больше 0
Два корня: (x_1=0, x_2=pi)

Пример 3. Постройте в одной системе координат графики функций $$ y=sinx, y=-sinx, y=2sinx, y=sinx+2 $$
Где на окружности sinx больше 0
(y=-sinx) – отражение исходной функции (y=sinx) относительно оси OX. Область значений (yin[-1;1]).
(y=2sinx) – исходная функция растягивается в 2 раза по оси OY. Область значений (yin[-2;2]).
(y=sinx+2) — исходная функция поднимается вверх на 2. Область значений (yin[1;3]).

Пример 4. Постройте в одной системе координат графики функций $$ y=sinx, y=sin2x, y=sinfrac $$
Где на окружности sinx больше 0
Амплитуда колебаний у всех трёх функций одинакова, область значений (yin[-1;1]).
Множитель под синусом изменяет период колебаний.
(y=sin2x) — период уменьшается в 2 раза, полная волна укладывается в отрезок (0leq xleq pi).
(y=sinfrac) — период увеличивается в 2 раза, полная волна укладывается в отрезок (0leq xleq 4pi).

Видео:Как решать тригонометрические неравенства?Скачать

Как решать тригонометрические неравенства?

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • Где на окружности sinx больше 0

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:10 класс, 11 урок, Числовая окружностьСкачать

    10 класс, 11 урок, Числовая окружность

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    🌟 Видео

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

    Отбор корней по окружностиСкачать

    Отбор корней по окружности

    Уравнение sinx=aСкачать

    Уравнение sinx=a

    Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать

    Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.

    Что больше ➜ sin4 или sin5 ➜ Супер способСкачать

    Что больше ➜ sin4 или sin5 ➜ Супер способ

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

    Решение тригонометрических неравенств. 10 класс.Скачать

    Решение тригонометрических неравенств. 10 класс.

    Решение тригонометрических неравенств. 10 класс.Скачать

    Решение тригонометрических неравенств. 10 класс.

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

    ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

    Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

    Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

    Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

    Синус, косинус, тангенс, котангенс за 5 МИНУТ

    Тригонометрия. Значения синуса и косинуса углов 0°,90°,180°, 270 °, 360° . 10-11 классСкачать

    Тригонометрия. Значения синуса и косинуса углов 0°,90°,180°, 270 °, 360° . 10-11 класс

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

    ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

    Тригонометрические неравенства, часть 1Скачать

    Тригонометрические неравенства, часть 1

    Решение неравенства sin t меньше √2/2Скачать

    Решение неравенства sin t меньше √2/2

    Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синусСкачать

    Как решать тригонометрическое уравнение 3cos^2x-sinx-1=0 Замена sinx=t Уравнение с косинусом и синус
    Поделиться или сохранить к себе: