Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Теорема о прямой и параллельной ей плоскости

В школьных учебниках ее и теоремой-то редко называют. Говорят, что это «лемма». Или «следствие». Или «задача». Как будто это что-то необязательное и незначительное. А на самом деле это важнейшая теорема о прямой и параллельной ей плоскости.

Даже если в школе ее доказывают — не говорят, зачем она нужна. Доказали — и забыли.

Но при этом в стереометрии — и особенно в задачах ЕГЭ по математике — есть множество ситуаций, когда без этой важнейшей теоремы не обойтись.

Теорема о прямой и параллельной ей плоскости:

Пусть прямая m параллельна плоскости . Если плоскость проходит через прямую m и пересекает плоскость по прямой c, то c параллельна m.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Для чего нам эта теорема? Например, для того, чтобы построить сечение пирамиды плоскостью, параллельной плоскости основания.

1. Постройте сечение тетраэдра плоскостью, проходящей через точки M, N, K. Точка N лежит на ребре

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Покажем, что плоскость сечения пересекает плоскость основания пирамиды по прямой NT, параллельной MK.

Прямая MK параллельна AB, лежащей в плоскости основания ABC. Значит,

Плоскость сечения проходит прямую MK, параллельную плоскости ABC. По теореме о прямой и параллельной ей плоскости, линия пересечения плоскости сечения и плоскости AВC параллельна прямой MK. Трапеция MKNT — искомое сечение.

Таких задач, где в сечении пирамиды получается трапеция (или параллелограмм), в вариантах Профильного ЕГЭ очень много.

2. В правильной четырехугольной пирамиде PABCD, все ребра которой равны 8, точка K — середина бокового ребра AP.

а) Постройте сечение пирамиды плоскостью, проходящей через точку K и параллельной прямым PB и BC.

б) Найдите площадь сечения.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Пусть точка M — середина AB. Тогда как средняя линия

Пусть точка N — середина PD. Поскольку KN — средняя линия и тогда

Построим сечение пирамиды плоскостью KMN. Пусть плоскости KMN и ABC пересекаются по прямой МE. Покажем, что

По теореме о прямой и параллельной ей плоскости,

Это значит, что Прямая ME содержит точку О, являющуюся проекцией вершины P на плоскость ABC. Трапеция KNEM — искомое сечение.

б) Найдём площадь сечения.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

где — высота трапеции KNEM.

Пусть H — середина KN,

Есть еще одна теорема — такая же полезная, как и теорема о прямой и параллельной ей плоскости. Вот она:

Теорема. Пусть плоскости и пересекаются по прямой р. Плоскость параллельна прямой р. Тогда она пересекает плоскости и по прямым, параллельным .

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Как ее назвать? Согласитесь, сложно придумать короткое название. Для себя (не для оформления на экзамене!) можно запомнить эту картинку как «домик» или «книжечку». Главное — запомнить формулировку и увидеть, как теорема применяется в решении задач.

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №6. Параллельность плоскостей

Перечень вопросов, рассматриваемых в теме

  1. Определение параллельных плоскостей;
  2. Свойства параллельных плоскостей;
  3. Признак параллельности плоскостей.

Глоссарий по теме

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Определение. Плоскости, которые не пересекаются, называются параллельными.

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии 10 Москва «Просвещение» 2013 год. С. 1-4.

Зив Б. Г. Геометрия 10 класс Дидактические материалы Москва «Просвещение» 2013 год. С.4, 14, 24

Теоретический материал для самостоятельного изучения

Как известно из аксиом стереометрии, если плоскости имеют одну общую точку, то они пересекаются по прямой, проходящей через эту точку. Значит две плоскости или пересекаются, или не пересекаются.

Определение. Плоскости, которые не пересекаются, называются параллельными.

Параллельные плоскости α и β обозначаются α∥β.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Любая конструкция с полом, потолком и стенами даёт нам представление о параллельных плоскостях — пол и потолок как две параллельные плоскости, боковые стены как параллельные плоскости.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Если плоскость альфа проходит через прямую а параллельную плоскости бета теоремаПризнак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.

Пусть α и β — данные плоскости, a1 и a2 – пересекающиеся прямые в плоскости α, а b1 и b2 соответственно параллельные им прямые в плоскости β.

Допустим, что плоскости α и β не параллельны, то есть они пересекаются по некоторой прямой c.

Прямая a1 параллельна прямой b1, значит она параллельна и самой плоскости β.

Прямая a2 параллельна прямой b2, значит она параллельна и самой плоскости β (признак параллельности прямой и плоскости).

Прямая c принадлежит плоскости α, значит хотя бы одна из прямых a1 или a2 пересекает прямую c, то есть имеет с ней общую точку. Но прямая c также принадлежит и плоскости β, значит, пересекая прямую c, прямая a1 или a2 пересекает плоскость β, чего быть не может, так как прямые a1 и a2 параллельны плоскости β.

Из этого следует, что плоскости α и β не пересекаются, то есть они параллельны.

Свойства параллельных плоскостей.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теоремаТеорема 1. Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны.

Пусть α и β — параллельные плоскости, а γ- плоскость, пересекающая их.

Плоскость α пересекается с плоскостью γ по прямой a.

Плоскость β пересекается с плоскостью γ по прямой b.

Линии пересечения a и b лежат в одной плоскости γ и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теоремаТеорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.

Пусть α и β — параллельные плоскости, а a и b – параллельные прямые, пересекающие их.

Через прямые a и b можно провести плоскость — эти прямые параллельны, значит определяют плоскость, причём только одну.

Проведённая плоскость пересекается с плоскостью α по прямой AB, а с плоскостью β по прямой CD.

По предыдущей теореме прямые AB и CD параллельны. Четырехугольник ABCD есть параллелограмм (у него противоположные стороны параллельны). А раз это параллелограмм, то противоположные стороны у него равны, то есть BC=AD.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

Теорема 3. Если прямая пересекает одну из двух параллельных плоскостей, то она пересекает и другую.

Пусть α||β, a пересекает α в точке А.

Выберем в плоскости любую точку C. Через эту точку и прямую a проведём плоскость.

Так как плоскость имеет с плоскостями α и β общие точки A и C соответственно, то она пересекает эти плоскости по некоторым прямым b и c, которые проходят соответственно через точки A и C. По предыдущей теореме прямые b и c параллельны. Тогда в плоскости прямая a пересекает (в точке A) прямую b, которая параллельна прямой c. Значит, прямая a пересекает и прямую c в некоторой точке B. Так как прямая c лежит в плоскости, то точка B является точкой пересечения прямой a и плоскости. Теорема доказана.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теоремаТеорема 4. Если плоскость пересекает одну из двух параллельных плоскостей, то она пересекает и другую плоскость.

Пусть α||β, α и γ пересекаются.

Докажем, что плоскости β и γ пересекаются.

Проведём в плоскости γ прямую a, пересекающую плоскость α в некоторой точке B. Тогда по теореме 3 прямая a пересекает и плоскость β в некоторой точке A. Следовательно, плоскости β и γ имеют общую точку A, т. е. пересекаются. Теорема доказана.

Теорема 5. Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и притом только одну.

Пусть нам даны плоскость α и точка М, ей не принадлежащая.

Докажем, что существует плоскость β, которой принадлежит точка М, параллельная плоскости α.

Если плоскость альфа проходит через прямую а параллельную плоскости бета теоремаВ данной плоскости α проведём две произвольные пересекающиеся прямые a и b. Через точку M проведём прямые a1 и b1, параллельные соответственно a и b. Плоскость, проходящую через пересекающиеся прямые a1 и b1, обозначим β. На основании признака параллельности плоскостей плоскость β параллельна плоскости α.

Докажем методом от противного, что β — единственная плоскость, удовлетворяющая условию теоремы.

Допустим, что через точку M проходит другая плоскость, например β1, параллельная α.

Так как β1 пересекает плоскость β (они имеют общую точку M), то по теореме 4 плоскость β1 пересекает и плоскость α (β ‖ α). Мы пришли к противоречию. Таким образом, предположение о том, что через точку M можно провести плоскость, отличную от плоскости β и параллельную плоскости α, неверно. Значит, плоскость β — единственна. Теорема доказана.

Рассмотрим несколько примеров на применение данных свойств.

Даны две пересекающиеся прямые a и b точка А, не лежащая в плоскости этих прямых. Докажите, что через точку А проходит плоскость, параллельная прямым a и b, и притом только одна.

Прямые a и b пересекаются по условию, следовательно, по следствию из аксиомы А1, эти прямые единственным образом определяют плоскость α.

Известно, что через точку А, не принадлежащую плоскости α, проходит единственная плоскость, параллельная α, т.е. параллельная прямым a и b (по теореме 5) .

Плоскости α и β параллельны, прямая m лежит в плоскости α. Докажите, что прямая m параллельна плоскости β.

Предположим, что прямая m пересекает плоскость β в точке М. Тогда точка М принадлежит плоскости α (т.к. прямая m лежит в плоскости α) и М принадлежит плоскости β, значит, α и β пересекаются, но они параллельны по условию. Очевидно, m не пересекает плоскость α, т.е. параллельна ей.

Примеры и разбор решения заданий тренировочного модуля

№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте

Если плоскость альфа проходит через прямую а параллельную плоскости бета теоремаТри отрезка А1А2, В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны.

Рассмотрим плоскость, проходящую через прямые А1А2 и В1В2

(она существует и единственная, т.к. прямые пересекаются).

В этой плоскости лежит четырехугольник А1В1А2В2, диагонали которого точкой пересечения делятся пополам. Следовательно, данный четырехугольник является параллелограммом (признак параллелограмма), значит, А1В1 и А2В2 параллельны.

Аналогично доказывается параллельность В1С1 и В2С2. Из вышеперечисленного следует, что плоскости А1В1С1 и А2В2С2 параллельны по признаку параллельности плоскостей.

Рассмотрим плоскость, проходящую через прямые А1А2 и В1В2

(она существует и единственная, т.к. прямые пересекаются).

В этой плоскости лежит четырехугольник А1В1А2В2, диагонали которого точкой пересечения делятся пополам. Следовательно, данный четырехугольник является параллелограммом (признак параллелограмма), значит, А1В1 и А2В2 параллельны.

Аналогично доказывается параллельность В1С1 и В2С2. Из вышеперечисленного следует, что плоскости А1В1С1 и А2В2С2 параллельны по признаку параллельности плоскостей.

Тип задания: выделение цветом

Два равнобедренных треугольника FKС и FKD с общим основанием FK расположены так, что точка С не лежит в плоскости FKD. Определите взаимное расположение прямых, содержащих медианы треугольников, проведенных к сторонам KС и KD.

Прямые, которые содержат медианы треугольников к KC и KD- выходят из одной точки F. Соответственно, можно сделать вывод, что данные прямые пересекаются.

Видео:№58. Докажите, что если плоскость γ пересекает одну из параллельных плоскостей α и β,Скачать

№58. Докажите, что если плоскость γ пересекает одну из параллельных плоскостей α и β,

Повторение теории. Решение типовых задач на параллельность прямой и плоскости

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Если плоскость альфа проходит через прямую а параллельную плоскости бета теорема

На этом уроке мы решим четыре типовые задачи на тему параллельных прямых и прямой, параллельной плоскости. Также мы повторим два утверждения, следующих из теоремы (признака параллельности прямой и плоскости), и воспользуемся ими при решении задач.

🎬 Видео

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

10 класс, 6 урок, Параллельность прямой и плоскостиСкачать

10 класс, 6 урок, Параллельность прямой и плоскости

2.2 Теорема о перечении плоскостей, одна из которых проходит через прямую, параллельную другойСкачать

2.2 Теорема о перечении плоскостей, одна из которых проходит через прямую, параллельную другой

10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскостиСкачать

10 класс, 18 урок, Теорема о прямой, перпендикулярной к плоскости

Параллельность прямой к плоскостиСкачать

Параллельность прямой к плоскости

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Геометрия 10 класс Параллельность прямых, прямой и плоскости теорияСкачать

Геометрия 10 класс Параллельность прямых, прямой и плоскости теория

Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | УмскулСкачать

Параллельность прямых, плоскостей, прямой и плоскости | Математика ЕГЭ для 10 класса | Умскул

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

6. Параллельность прямой и плоскостиСкачать

6. Параллельность прямой и плоскости

№55. Докажите, что если прямая а пересекает плоскость α, то она пересекает также любуюСкачать

№55. Докажите, что если прямая а пересекает плоскость α, то она пересекает также любую

12.1 Признак перпендикулярности прямой и плоскостиСкачать

12.1  Признак перпендикулярности прямой и плоскости

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 классСкачать

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 класс

01. Параллельность прямой и плоскостиСкачать

01. Параллельность прямой и плоскости

10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

10 класс, 23 урок, Признак перпендикулярности двух плоскостейСкачать

10 класс, 23 урок, Признак перпендикулярности двух плоскостей
Поделиться или сохранить к себе: