Если дуга окружности составляет 80 градусов то вписанный угол

Если дуга окружности составляет 80 градусов то вписанный угол

Какие из следующих утверждений верны?

1) Через любые три точки проходит не более одной окружности.

2) Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.

3) Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются.

4) Если дуга окружности составляет 80°, то вписанный угол, опирающийся на эту дугу окружности, равен 40°.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Через любые три точки проходит не более одной окружности.» — верно, Через любые три точки, не лежащие на одной прямой, проходит единственная окружность. Если точки лежат на одной прямой, то окружность провести невозможно. Тем самым, через любые три точки можно провести не более одной окружности.

2) «Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.» — верно, если расстояние от центра до прямой меньше радиуса, то окружности имеют две общие точки, если окружности касаются то окружности имеют одну общую точку, если расстояние больше радиуса, то окружности не имеют общих точек.

3) «Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются» — неверно, окружность, радиус которой равен 3, лежит внутри окружности с радиусом 5.

4) «Если дуга окружности составляет 80°, то вписанный угол, опирающийся на эту дугу окружности, равен 40°.» — верно, вписанный угол измеряется половиной дуги,на которую он опирается.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Какие из следующих утверждений верны?

1. Если дуга окружности составляет 80 градусов, то вписанный угол, опирающийся на эту дугу окружности, равен 40 градусов.
2. Если радиусы двух окружностей равны 3 и 5,а расстояние между их центрами равно 1, то эти окружности пересекаются.
3. Если расстояние между центрами двух окружностей равно сумме их диаметров, то эти окружности касаются.
4. Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.

Видео:Вписанные и центральные углы #огэ #огэматематика #математикаСкачать

Вписанные и центральные углы #огэ #огэматематика #математика

Центральные и вписанные углы

Если дуга окружности составляет 80 градусов то вписанный угол

О чем эта статья:

Видео:ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный УголСкачать

ВАЖНЫЕ УГЛЫ в Геометрии — Центральный и Вписанный Угол

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

Если дуга окружности составляет 80 градусов то вписанный угол

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

Если дуга окружности составляет 80 градусов то вписанный угол

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Видео:Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Если дуга окружности составляет 80 градусов то вписанный угол

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

Если дуга окружности составляет 80 градусов то вписанный угол

  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

Если дуга окружности составляет 80 градусов то вписанный угол

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

Если дуга окружности составляет 80 градусов то вписанный угол

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

Если дуга окружности составляет 80 градусов то вписанный угол

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

Если дуга окружности составляет 80 градусов то вписанный угол

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

Если дуга окружности составляет 80 градусов то вписанный угол

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

Если дуга окружности составляет 80 градусов то вписанный угол

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

Если дуга окружности составляет 80 градусов то вписанный угол

ㄥBAC + ㄥBDC = 180°

Видео:2187 Найдите угол cdb если вписанные углы ADB и adc опираются на дугиСкачать

2187 Найдите угол cdb если вписанные углы ADB и adc опираются на дуги

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Если дуга окружности составляет 80 градусов то вписанный угол

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Если дуга окружности составляет 80 градусов то вписанный угол

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

Если дуга окружности составляет 80 градусов то вписанный угол

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

🎬 Видео

8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

2169 дуга окружности AC не содержащая точки B составляет 165 градусовСкачать

2169 дуга окружности AC не содержащая точки B составляет 165 градусов

Вписанные углы в окружностиСкачать

Вписанные углы в окружности

2023 На окружности с центром в точке О отмечены точки А и Б так что угол аоб равен 45Скачать

2023 На окружности с центром в точке О отмечены точки А и Б так что угол аоб равен 45

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ|Найдите вписанный угол, опирающийся на дугу, которая составляет 1/5 окружностСкачать

ЗАДАНИЕ 1| ЕГЭ ПРОФИЛЬ|Найдите вписанный угол, опирающийся на дугу, которая составляет 1/5 окружност

🔴 В окружности с центром O отрезки AC и BD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В окружности с центром O отрезки AC и BD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс АтанасянСкачать

ЦЕНТРАЛЬНЫЙ угол ВПИСАННЫЙ угол окружности 8 класс Атанасян

На окружности с центром O отмечены точки A и B так ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

На окружности с центром O отмечены точки A и B так ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

ГЕОМЕТРИЯ 8 класс : Центральные и вписанные углыСкачать

ГЕОМЕТРИЯ 8 класс : Центральные и вписанные углы

ОГЭ ЗАДАНИЕ 16 НА ОКРУЖНОСТИ ОТМЕЧЕНЫ ТОЧКИ А И В НАЙДИТЕ ДЛИНУ БОЛЬШЕЙ ДУГИ ЕСЛИ МЕНЬШАЯ 58Скачать

ОГЭ ЗАДАНИЕ 16 НА ОКРУЖНОСТИ ОТМЕЧЕНЫ ТОЧКИ А И В НАЙДИТЕ ДЛИНУ БОЛЬШЕЙ ДУГИ ЕСЛИ МЕНЬШАЯ 58

8 класс. Геометрия. Дуга окружности. Центральный и вписанный углы.Скачать

8 класс. Геометрия. Дуга окружности. Центральный и вписанный углы.

Решение задач на тему центральные и вписанные углы.Скачать

Решение задач на тему центральные и вписанные углы.

8 класс. Решаем задачи на центральные и вписанные углы | Часть 1Скачать

8 класс. Решаем задачи на центральные и вписанные углы |  Часть 1

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)
Поделиться или сохранить к себе: