Движение заряда по окружности в электрическом поле

Работа по перемещению заряда в электростатическом поле с примерами

Содержание:

Работа по перемещению заряда в электростатическом поле:

В повседневной жизни мы довольно часто, особенно в сухую погоду, встречаемся с ситуацией, когда, коснувшись какого-либо тела, чувствуем неприятный удар. Как показывает опыт, таких сюрпризов можно ожидать от тел, имеющих высокий потенциал.

Видео:Теория движения заряженных частиц в электрическом поле .Часть 1Скачать

Теория движения заряженных частиц в электрическом поле .Часть 1

Работа по перемещению заряда в однородном электростатическом поле

Если электростатическое поле действует с некоторой силой на электрически заряженные тела, то оно способно совершить работу по перемещению этих тел.

Пусть в однородном электростатическом поле напряженностью Движение заряда по окружности в электрическом поле

Движение заряда по окружности в электрическом поле

Вычислим работу А, которую совершает сила Движение заряда по окружности в электрическом поле, действующая на заряд со стороны электростатического поля. По определению работы: A=Fscosα.

Поле однородное, поэтому сила Движение заряда по окружности в электрическом полепостоянна, ее модуль равен: F=qE, а scosα=d=Движение заряда по окружности в электрическом полеявляется проекцией вектора перемещения на направление силовых линий поля. Следовательно, работа сил однородного электростатического поля по перемещению электрического заряда q из точки 1 в точку 2 ( Движение заряда по окружности в электрическом поле) равна:

Движение заряда по окружности в электрическом поле

Обратите внимание! Если бы в данном случае заряд перемещался не из точки 1 в точку 2, а наоборот, то знак работы изменился бы на противоположный, то есть работа совершалась бы против сил поля.

Обратите внимание! Формула Движение заряда по окружности в электрическом полебудет справедлива в случаях движения заряда по любой траектории. То есть однородное электростатическое поле является потенциальным.

Потенциальным является любое электростатическое поле: работа электростатических (кулоновских) сил (как и работа гравитационных сил) не зависит от формы траектории, по которой перемещается заряд, а определяется начальным и конечным положениями заряда. Если траектория движения заряда замкнута, работа сил поля равна нулю.

Потенциальная энергия заряженного тела в поле, созданном точечным зарядом

Заряженное тело, помещенное в электростатическое поле, как и тело, находящееся в гравитационном поле Земли, обладает потенциальной энергией. Потенциальную энергию заряда, находящегося в электрическом поле, обычно обозначают символом Движение заряда по окружности в электрическом поле. Согласно теореме о потенциальной энергии изменение потенциальной энергии заряда, взятое с противоположным знаком, равно работе, которую совершает электростатическое поле по перемещению заряда из точки 1 в точку 2 поля:

Движение заряда по окружности в электрическом поле

Потенциальную энергию взаимодействия двух точечных зарядов Q и q, расположенных на расстоянии r друг от друга, определяют по формуле:

Движение заряда по окружности в электрическом поле

Обратите внимание: 1) потенциальная энергия взаимодействия зарядов положительна ( Движение заряда по окружности в электрическом поле> 0), если заряды одноименные, и отрицательна ( Движение заряда по окружности в электрическом поле0), то потенциал этого поля в любой точке является положительным ( ϕ > 0); 2) если поле создано отрицательным точечным зарядом (Q

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой АрхиповымСкачать

Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой Архиповым

ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ. СИЛА ЛОРЕНЦА

Электрическое и магнитное поля действуют на движущиеся заряды, в результате чего заряженная частица, попадая в поле, меняет свою траекторию. Исключение составляет тот случай, когда направление движения заряда совпадает с направлением поля и при этом в электрическом поле происходит ускорение или замедление его. А магнитное поле в данном случае вообще не взаимодействует с зарядом.

Пусть электрон влетает по горизонтали со скоростью v в электрическое поле с напряженностью Ё плоского конденсатора длиной х. Под действием силы поля Ёэл = еЁ = та электрон смещается полем вверх, двигается по криволинейной траектории и вылетает из конденсатора, отклонившись от первоначального направления на отрезок у, как показано на рис. 12.8. Движение того же электрона в однородном магнитном поле (рис. 12.9), представляет собой электрический ток. Поэтому магнитное поле отклонит частицу вверх от первоначальной траектории. Согласно закону Ампера сила, отклоняющая электрон на любом участке / траектории, равна fA = IBlsina. Но так как сила тока / = е /1, где t — время, за которое заряд е проходит участок /, то Fa = eB(l / /)sina. Учитывая, что / /1 = и и в общем случае е =q, получим Движение заряда по окружности в электрическом поле

Движение заряда по окружности в электрическом поле

Силу Fn называют силой Лоренца. Направления векторов Fn,vn В взаимно перпендикулярны. Направление силы Лоренца, действующей на положительный заряд, можно определить по правилу левой руки, как и направление силы Ампера, с той лишь разницей, что четыре вытянутых пальца следует направить вдоль вектора v.

При этом нельзя забывать, что для положительного заряда направления I и v совпадают, а для отрицательного — противопо-

Движение заряда по окружности в электрическом поле

ложны. Так как сила Лоренца перпендикулярна вектору скорости, то она изменяет только направление скорости движения заряда, не изменяя модуля этой скорости. Это значит, что работа силы Лоренца равна нулю.

Иными словами, постоянное магнитное поле не совершает работы над движущимся с постоянной скоростью зарядом. Вспомним, что электрическое поле изменяет энергию и модуль скорости движущегося заряда.

Из формулы (12.7) очевидно, что направление силы Лоренца и направление вызываемого ею отклонения заряда зависят от взаимного направления векторов у и В. Возможны следующие варианты соотношения направлений векторов у и В.

Первый: у || В, а = vB = 0°, sina = 0, Fn= 0 — это значит, что магнитное поле на заряд не действует.

Видео:Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать

Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном поле

Электрическое поле

Движение заряда по окружности в электрическом поле

Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.

Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.

Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.

Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.

Видео:Движение заряженной частицы в магнитном поле 2021-1Скачать

Движение заряженной частицы в магнитном поле    2021-1

Электризация тел

Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.

  • трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
  • через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
  • при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
  • при ударе;
  • под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.

Видео:55. Движение частиц в электромагнитных поляхСкачать

55. Движение частиц в электромагнитных полях

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​ ( q ) ​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10 -19 Кл), наименьший положительный заряд (1,6·10 -19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

Движение заряда по окружности в электрическом поле

где ​ ( N ) ​ — число избыточных или недостающих электронов;
​ ( e ) ​ — элементарный заряд, равный 1,6·10 -19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует.

Электрические заряды взаимодействуют:

  • заряды одного знака отталкиваются:

Движение заряда по окружности в электрическом поле

  • заряды противоположных знаков притягиваются:

Движение заряда по окружности в электрическом поле

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

Движение заряда по окружности в электрическом поле

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Движение заряда по окружности в электрическом поле

Видео:Положительно заряженная частица в магнитном и электрическом поле. Выполнялка 36Скачать

Положительно заряженная частица в магнитном и электрическом поле. Выполнялка 36

Закон сохранения электрического заряда

Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.

В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.

Полный электрический заряд ​ ( (q) ) ​ системы равен алгебраической сумме ее положительных и отрицательных зарядов ​ ( (q_1, q_2 … q_N) ) ​:

Движение заряда по окружности в электрическом поле

Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.

Видео:Движение заряженных частиц Лекция 9-2Скачать

Движение заряженных частиц Лекция 9-2

Закон Кулона

Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.

Закон Кулона формулируется так:
сила взаимодействия ​ ( F ) ​ двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ​ ( q_1 ) ​ и ( q_2 ) и обратно пропорциональна квадрату расстояния между ними ​ ( r ) ​:

Движение заряда по окружности в электрическом поле

где ​ ( k=frac=9cdot10^9 ) ​ (Н·м 2 )/Кл 2 – коэффициент пропорциональности,
​ ( varepsilon_0=8.85cdot10^ ) ​ Кл 2 /(Н·м 2 ) – электрическая постоянная.

Коэффициент ​ ( k ) ​ численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.

Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Движение заряда по окружности в электрическом поле

Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:

Движение заряда по окружности в электрическом поле

где ​ ( varepsilon ) ​ – диэлектрическая проницаемость среды.

Закон Кулона применим к взаимодействию

  • неподвижных точечных зарядов;
  • равномерно заряженных тел сферической формы.

В этом случае ​ ( r ) ​ – расстояние между центрами сферических поверхностей.

Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции).

Видео:Билеты №25, 26 "Движение зарядов в поле"Скачать

Билеты №25, 26 "Движение зарядов в поле"

Действие электрического поля на электрические заряды

Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.

Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.

Свойства электрического поля заключаются в том, что оно:

  • материально;
  • создается зарядом;
  • обнаруживается по действию на заряд;
  • непрерывно распределено в пространстве;
  • ослабевает с увеличением расстояния от заряда.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.

Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:

Движение заряда по окружности в электрическом поле

где ​ ( vec ) ​ – напряженность электрического поля, ​ ( q ) ​ – заряд.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.

Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:

  • сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
  • записать для заряда условие равновесия или основное уравнение динамики материальной точки;
  • выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
  • если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
  • записать математически все вспомогательные условия;
  • решить полученную систему уравнений относительно неизвестной величины;
  • проверить решение

Видео:Движение заряженных частиц в магнитном полеСкачать

Движение заряженных частиц в магнитном поле

Напряженность электрического поля

Напряженность электрического поля ​ ( vec ) ​ – векторная физическая величина, равная отношению силы ​ ( F ) ​, действующей на пробный точечный заряд, к величине этого заряда ​ ( q ) ​:

Движение заряда по окружности в электрическом поле

Обозначение – ( vec ) , единица измерения в СИ – Н/Кл или В/м.

Напряженность поля точечного заряда в вакууме вычисляется по формуле:

Движение заряда по окружности в электрическом поле

где ( k=frac=9cdot10^9 ) (Н·м 2 )/Кл 2 ,
​ ( q_0 ) ​ – заряд, создающий поле,
​ ( r ) ​ – расстояние от заряда, создающего поле, до данной точки.

Напряженность поля точечного заряда в среде вычисляется по формуле:

Движение заряда по окружности в электрическом поле

где ​ ( varepsilon ) ​ – диэлектрическая проницаемость среды.

Важно!
Напряженность электрического поля не зависит от величины пробного заряда, она определяется величиной заряда, создающего поле.

Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку.

Движение заряда по окружности в электрическом поле

Линией напряженности электрического поля называется линия, касательная к которой в каждой точке направлена вдоль вектора напряженности ​ ( vec ) ​.

Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных электрических зарядах или уходят в бесконечность от положительного заряда и приходят из бесконечности к отрицательному заряду.

Распределение линий напряженности вокруг положительного и отрицательного точечных зарядов показано на рисунке.

Движение заряда по окружности в электрическом поле

Определяя направление вектора ​ ( vec ) ​ в различных точках пространства, можно представить картину распределения линий напряженности электрического поля.

Движение заряда по окружности в электрическом поле

Поле, в котором напряженность одинакова по модулю и направлению в любой точке, называется однородным электрическим полем. Однородным можно считать электрическое поле между двумя разноименно заряженными металлическими пластинами. Линии напряженности в однородном электрическом поле параллельны друг другу.

Видео:Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.

Принцип суперпозиции электрических полей

Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов.

Принцип суперпозиции электрических полей: напряженность электрического поля системы ​ ( N ) ​ зарядов равна векторной сумме напряженностей полей, создаваемых каждым из них в отдельности:

Движение заряда по окружности в электрическом поле

Движение заряда по окружности в электрическом поле

Электрические поля от разных источников существуют в одной точке пространства и действуют на заряд независимо друг от друга.

Видео:Движение заряженных частицСкачать

Движение заряженных частиц

Потенциальность электростатического поля

Электрическое поле с напряженностью ​ ( vec ) ​ при перемещении заряда ​ ( q ) ​ совершает работу. Работа ​ ( A ) ​ электростатического поля вычисляется по формуле:

Движение заряда по окружности в электрическом поле

где ​ ( d ) ​ – расстояние, на которое перемещается заряд,
​ ( alpha ) ​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле.

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным.

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​ ( W ) ​, так как буквой ​ ( E ) ​ обозначают напряженность поля:

Движение заряда по окружности в электрическом поле

Потенциальная энергия заряда ​ ( q ) ​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Видео:Урок 229. Работа электрического поля. Потенциал. Электрическое напряжениеСкачать

Урок 229. Работа электрического поля. Потенциал. Электрическое напряжение

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​ ( varphi ) ​, единица измерения в СИ – вольт (В).

Движение заряда по окружности в электрическом поле

Потенциал ( varphi ) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Движение заряда по окружности в электрическом поле

Обозначение – ​ ( Deltavarphi ) ​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​ ( U ) ​ и называют напряжением.

Важно!
Разность потенциалов ( Deltavarphi=varphi_1-varphi_2 ) , а не изменение потенциала ( Deltavarphi=varphi_2-varphi_1 ) . Тогда работа электростатического поля равна:

Движение заряда по окружности в электрическом поле

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле.

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​ ( q ) ​ в точке, удаленной от него на расстояние ​ ( r ) ​, вычисляется по формуле:

Движение заряда по окружности в электрическом поле

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​ ( r =R ) ​, где ​ ( R ) ​ – радиус шара). Напряженность поля внутри шара равна нулю.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Движение заряда по окружности в электрическом поле

Разность потенциалов и напряженность связаны формулой:

Движение заряда по окружности в электрическом поле

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Движение заряда по окружности в электрическом поле

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Видео:Теория движения заряженных частиц в электрическом поле. Часть 2Скачать

Теория движения заряженных частиц в электрическом поле.  Часть 2

Проводники в электрическом поле

Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.

Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.

Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.

Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.

Важно!
Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей. На этом основана электростатическая защита.

Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.

Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.

Важно!
Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны).

Видео:Движение заряженной частицы в магнитном поле | 16 задание ЕГЭ | Магнитные поля в ЕГЭ по физикеСкачать

Движение заряженной частицы в магнитном поле | 16 задание ЕГЭ | Магнитные поля в ЕГЭ по физике

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

Движение заряда по окружности в электрическом поле

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Видео:Урок 218. Напряженность электрического поляСкачать

Урок 218. Напряженность электрического поля

Электрическая емкость. Конденсатор

Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.

Обозначение – ​ ( C ) ​, единица измерения в СИ – фарад (Ф).

Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.

Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:

Движение заряда по окружности в электрическом поле

Формула для вычисления электроемкости:

Движение заряда по окружности в электрическом поле

где ​ ( q ) ​ – заряд проводника, ​ ( varphi ) ​ – его потенциал.

Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.

Электроемкость конденсатора рассчитывается по формуле:

Движение заряда по окружности в электрическом поле

где ​ ( q ) ​ – модуль заряда одной из обкладок,
​ ( U ) ​ – разность потенциалов между обкладками.

Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.

Плоский конденсатор представляет две параллельные пластины площадью ​ ( S ) ​, находящиеся на расстоянии ​ ( d ) ​ друг от друга.

Электроемкость плоского конденсатора:

Движение заряда по окружности в электрическом поле

где ​ ( varepsilon ) ​ – диэлектрическая проницаемость вещества между обкладками,
( varepsilon_0 ) – электрическая постоянная.

На электрической схеме конденсатор обозначается:

Движение заряда по окружности в электрическом поле

  • по типу диэлектрика – воздушный, бумажный и т. д.;
  • по форме – плоский, цилиндрический, сферический;
  • по электроемкости – постоянной и переменной емкости.

Конденсаторы можно соединять между собой.

Параллельное соединение конденсаторов

Движение заряда по окружности в электрическом поле

При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:

Движение заряда по окружности в электрическом поле

Движение заряда по окружности в электрическом поле

Последовательное соединение конденсаторов

Движение заряда по окружности в электрическом поле

При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.

Заряды конденсаторов при таком соединении равны:

Движение заряда по окружности в электрическом поле

Движение заряда по окружности в электрическом поле

Величина, обратная общей емкости:

Движение заряда по окружности в электрическом поле

При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.

Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости.

Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.

Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

Энергия электрического поля конденсатора

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Электрическая энергия конденсатора сосредоточена в пространстве между обкладками конденсатора, то есть в электрическом поле, поэтому ее называют энергией электрического поля. Формулы для вычисления энергии электрического поля:

Движение заряда по окружности в электрическом поле

Так как напряженность электрического поля прямо пропорциональна напряжению, то энергия электрического поля конденсатора пропорциональна квадрату напряженности.

Плотность энергии электрического поля:

Движение заряда по окружности в электрическом поле

где ​ ( V ) ​ – объем пространства между обкладками конденсатора.

Плотность энергии не зависит от параметров конденсатора, а определяется только напряженностью электрического поля.

🎥 Видео

Физика - Магнитное полеСкачать

Физика - Магнитное поле

Электрические зарядыСкачать

Электрические заряды

Движение электронов в магнитном поле - Сила ЛоренцаСкачать

Движение электронов в магнитном поле - Сила Лоренца

Движение заряженной частицы по винтовой линии (задача).Скачать

Движение заряженной частицы по винтовой линии (задача).
Поделиться или сохранить к себе: