Во всяком треугольнике любая сторона меньше суммы двух других. Вот наш треугольник ABC. Утверждение теоремы состоит в том, что даже самая длинная его сторона AC — всё равно короче, чем сумма двух других сторон AB и BC. Для доказательства этого утверждения проведём высоту из вершины большего угла B. В каждом полученном прямоугольном треугольнике гипотенуза больше катета , и две гипотенузы в сумме больше большой стороны. Каждая из маленьких сторон (то есть AB или BC) — меньше, чем AC, и понятное дело, меньше суммы двух других сторон. ЧТД.
- Две стороны треугольника меньше третьей
- Треугольник
- Из двух последних свойств следует, что каждый угол в равностороннем
- треугольнике равен 60 º.
- 4. Продолжая одну из сторон треугольника ( AC , рис.25), получаем внешний
- угол BCD . Внешний угол треугольника равен сумме внутренних углов,
- не смежных с ним : BCD = A + B .
- 5. Любая сторона треугольника меньше суммы двух других сторон и больше
- их разности ( a b – c; b b > a – c; c c > a – b ).
- 📹 Видео
Видео:Найдите сторону треугольника на рисункеСкачать
Две стороны треугольника меньше третьей
Доказательство: Пусть ABC — данный треугольник. Докажем, что AB + AC > BC. Опустим из вершины A этого треугольника высоту AD. Рассмотрим два случая:
1) Точка D принадлежит отрезку BC, или совпадает с его концами (рис.1). В этом случае AB>DB и AC>DC, так как длина наклонной больше длины проекции наклонной. Сложив эти два неравенства, получим, что AB + AC > BD + DC = BC. Что и требовалось доказать.
2) Точка D не принадлежит отрезку BC (рис.2). В этом случае BD В , прямую BD , параллельную противоположной стороне АС. Теперь из чертежа ясно, что ∠ 1’ = ∠ 1 и ∠ 2’ = ∠ 2 (накрест лежащие углы), и так как 1’ + 2’ + 3 = 180°, то 1 + 2 + 3 = 180°, что и требовалось доказать.
Продолжая сторону АС, находим как следствие:
Теорема 3. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Теорема 3.1 Тем самым, внешний угол треугольника больше каждого из его внутренних углов, с ним не смежных.
Действительно, на рисунке ∠ 4=180°- ∠ 2 (как смежные)
Также ∠ 2=180°-( ∠ 1+ ∠ 3)
Подставляя второе выражение в первое, получаем: ∠ 4= ∠ 1+ ∠ 3
Ну, а так как ни один из углов не может равняться нулю, каждый из этих углов меньше внешнего, например, ∠ 1= ∠ 4- ∠ 3 или ∠ 1 ∠ 4
Таким образом, зная два угла треугольника, можно найти и третий. Ясно также, что если один угол в треугольнике прямой или тупой, то два других его угла острые.
Определение 1. Если один угол треугольника тупой, то треугольник называется тупоугольным.
Определение 2. Если один угол треугольника прямой, то треугольник называется прямоугольным.
Определение 3. Если все три угла треугольника острые, то треугольник называется остроугольным.
Из задач на построение треугольников видно, что при любых данных положительных углах α , β , γ , составляющих в сумме два прямых, существуют треугольники, имеющие α , β , γ своими внутренними углами. Итак,
Теорема 4.Условие a + b + g = 180 ° необходимо и достаточно для существования треугольника с углами a , b , g . Так как внешний угол треугольника дополняет внутренний смежный с ним угол до развернутого угла, то
Теорема 5. Сумма внешних углов треугольника равна 360°.
Связь между величинами сторон и углов треугольника устанавливает следующая
Теорема 6. Против большей стороны в треугольнике лежит больший угол.
Теорема 6.1. Против равных сторон лежат равные углы.
Теорема 7. В любом треугольнике против большего угла лежит большая сторона.
Теорема 7.1. Против равных углов лежат равные стороны.
Доказательство. Применим свойство наклонных. Пусть в треугольнике АВС сторона АС больше стороны ВС. Проведем высоту СМ треугольника. Так как наклонная СВ меньше наклонной СА, то её основание В лежит ближе к основанию высоты СМ, чем основание А наклонной СА. Поэтому, если перегнуть рисунок по СМ, то угол при вершине В перейдет во внешний угол B ’ треугольника АС B ’ и, следовательно, будет больше угла А, как внутреннего с ним не смежного. Итак, если между сторонами треугольника имеются неравентсва a b c , то соответственно и противолежащие углы удовлетворяют неравенствам a b g . Равенство углов, лежащих против равных сторон, сразу получится, если учесть, что равные наклонные расположены относительно перпендикуляра симметрично и совмещаются при сгибе плоскости по перпендикуляру. При этом совмещаются и углы, равенство которых должно быть доказано.
Обратное утверждение, говорящее, что против большего угла лежит большая сторона, получается рассуждением от противного. Так, пусть a b . Если бы мы имели a > b или a = b , то должно было бы быть a > b или a = b , что противоречит условию. Поэтому a b , что и требовалось доказать. Так же доказывается, что против равных углов расположены равные стороны. В частности, равносторонний треугольник является и равноугольным. Каждый из его углов в этом случае равен 60°
Видео:№52. Две стороны треугольника параллельны плоскости α. Докажите, что и третья сторонаСкачать
Треугольник
Треугольник. Остроугольный, тупоугольный и прямоугольный треугольник.
Катеты и гипотенуза. Равнобедренный и равносторонний треугольник.
Основные свойства треугольников. Сумма углов треугольника.
Внешний угол треугольника. Признаки равенства треугольников.
Признаки равенства прямоугольных треугольников.
Замечательные линии и точки в треугольнике: высоты, медианы,
биссектрисы, срединны e перпендикуляры, ортоцентр,
центр тяжести, центр описанного круга, центр вписанного круга.
Теорема Пифагора. Соотношение сторон в произвольном треугольнике.
Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.
Если все три угла острые ( рис.20 ), то это остроугольный треугольник . Если один из углов прямой ( C, рис.21 ), то это прямоугольный треугольник; стороны a , b , образующие прямой угол, называются катетами; сторона c , противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( B, рис.22 ), то это тупоугольный треугольник.
Треугольник ABC ( рис.23 ) — равнобедренный , если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) – равносторонний , если все его стороны равны ( a = b = c ). В общем случае ( a ≠ b ≠ c ) имеем неравносторонний треугольник.
Основные свойства треугольников. В любом треугольнике:
1. Против большей стороны лежит больший угол, и наоборот.
2. Против равных сторон лежат равные углы, и наоборот.
В частности, все углы в равностороннем треугольнике равны.
3. Сумма углов треугольника равна 180 º .
Видео:№470. Две стороны треугольника равны 7,5 см и 3,2 см. Высота, проведенная кСкачать
Из двух последних свойств следует, что каждый угол в равностороннем
Видео:Найдите третью сторону треугольникаСкачать
треугольнике равен 60 º.
Видео:Найдите сторону треугольника, если другие его стороны равны 1 и 5Скачать
4. Продолжая одну из сторон треугольника ( AC , рис.25), получаем внешний
Видео:№107. В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметрСкачать
угол BCD . Внешний угол треугольника равен сумме внутренних углов,
Видео:По силам каждому ★ Найдите стороны треугольника на рисункеСкачать
не смежных с ним : BCD = A + B .
Видео:Геометрия Две стороны треугольника угол между которыми равен 120 относятся как 5:3 Найдите стороныСкачать
5. Любая сторона треугольника меньше суммы двух других сторон и больше
Видео:Задача про стороны треугольника. Геометрия 7 класс.Скачать
их разности ( a b – c; b b > a – c; c c > a – b ).
Признаки равенства треугольников.
Треугольники равны, если у них соответственно равны:
a ) две стороны и угол между ними;
b ) два угла и прилегающая к ним сторона;
Признаки равенства прямоугольных треугольников.
Д ва прямоугольных треугольника равны, если выполняется одно из следующих условий:
1) равны их катеты;
2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;
3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;
4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;
5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.
Замечательные линии и точки в треугольнике.
Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке , называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O , рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O , рис.27 ) – снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.
Медиана – это отрезок , соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD , BE , CF , рис.28 ) пересекаются в одной точке O , всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины.
Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника ( AD , BE , CF , рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга (см. раздел «Вписанные и описанные многоугольники»).
Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам ; например, на рис.29 AE : CE = AB : BC .
Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника АВС ( KO , MO , NO , рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K , M , N – середины сторон треугольника ABC ).
В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.
Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a , b и гипотенузой c .
Построим квадрат AKMB , используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF , сторона которого равна a + b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2 . С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB , то есть
и окончательно имеем:
Соотношение сторон в произвольном треугольнике.
В общем случае ( для произвольного треугольника ) имеем:
где C – угол между сторонами a и b .
Copyright © 2004 — 2012 Др. Юрий Беренгард. All rights reserved.
📹 Видео
Неравенства треугольника. 7 класс.Скачать
Две стороны треугольникаСкачать
Геометрия Две стороны треугольника равны 15 см и 35 см а угол противолежащий большей из известныхСкачать
№157. В равнобедренном треугольнике основание больше боковой стороны на 2 см, но меньше суммы боковыСкачать
Геометрия 7 класс (Урок№9 - Треугольник.)Скачать
№156. Периметр треугольника ABC равен 15 см. Сторона ВС больше стороны АВ на 2 см, а сторона ABСкачать
7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Площадь треугольника. Как найти площадь треугольника?Скачать
Периметр треугольника. Как найти периметр треугольника?Скачать
Нахождение стороны прямоугольного треугольникаСкачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать