Две касающиеся внешним образом в точке окружности

Две касающиеся внешним образом в точке окружности

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 16 и 48, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.

Пусть Q — центр большей окружности, а O — центр меньшей, QM и ON — радиусы, проведённые в точки касания окружностей с прямой AC, S — центр окружности, описанной около треугольника ABC , r — радиус окружности, описанной около треугольника ABC .

Поскольку BC и AB — общие касательные к окружностям, BO и BQ — биссектрисы углов ABK и смежного с ним. Значит, угол OBQ прямой, следовательно, из треугольника OBQ находим, что Две касающиеся внешним образом в точке окружности

Пусть AN = x. Прямоугольные треугольники ANO и AMQ подобны с коэффициентом 3, значит, AM = 3x , MN = 2x.

Отрезки MC , CK и CN равны как отрезки касательных, проведённых из одной точки, значит, Две касающиеся внешним образом в точке окружности, Две касающиеся внешним образом в точке окружности, откуда Две касающиеся внешним образом в точке окружности.

В прямоугольном треугольнике ABK находим неизвестный катет:

Две касающиеся внешним образом в точке окружности

В прямоугольном треугольнике SBK по теореме Пифагора имеем

Две касающиеся внешним образом в точке окружности; Две касающиеся внешним образом в точке окружности

Приведем примечание Киры Ананьиной.

Заменим, что в прямоугольном треугольнике ABK Две касающиеся внешним образом в точке окружностиследовательно, угол BAK равен 30 градусов, а угол BAC равен 60 градусов. Следовательно, треугольник ABC равносторонний, и центр описанной вокруг него окружности совпадает с центром вписанной в него окружности. Таким образом, точки S и O совпадут.

Видео:Две касающиеся внешним образом в точке А окружности, радиусы которых равны 4 и 8Скачать

Две касающиеся внешним образом в точке А окружности, радиусы которых равны 4 и 8

Задание 16 Профильного ЕГЭ по математике. Планиметрия. Задача 3

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Две касающиеся внешним образом в точке окружности

а) Другими словами, в пункте (а) надо доказать, что точка D лежит на прямой , а точка C — на прямой .

— прямоугольная трапеция, поскольку (как радиусы, проведенные в точку касания), .

Если , то (как односторонние углы),

Тогда — диаметр первой окружности; — диаметр второй окружности, так как вписанный угол, опирающийся на диаметр, — прямой.

AK — высота в , где

Две касающиеся внешним образом в точке окружности

Рассмотрев прямоугольную трапецию , где , найдем, что .

Видео:Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать

Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |

Задача 45619 Две касающиеся внешним образом в точке К.

Условие

Две касающиеся внешним образом в точке окружности

Две касающиеся внешним образом в точке К окружности, радиус одной из которых вдвое больше радиуса другой, вписаны в угол с вершиной А. Общая касательная к этим окружностям, проходящая через точку К, пересекает стороны угла в точках В и С.

а) Докажите, что АВ = АС.
б) Найдите радиус окружности, описанной около треугольника АВС, если АВ = sqrt(3). [16п2]

Все решения

Две касающиеся внешним образом в точке окружности

Две окружности вписаны в угол с вершиной А.
Радиусы O_(1)E и O_(1)F, проведенные в точки касания , [i]перпендикулярны [/i]сторонам угла.

По [i]свойству касательных[/i] к окружности, проведенных из одной точки, отрезки касательных равны:
[red]АE[/red]=[red]АF[/red]
и образуют [i]равные углы [/i]с прямой, проходящей через вершину А и центры окружностей.
Значит
центры O_(1) и O_(2) лежат на [i]биссектрисе[/i] угла А

BC — касательная к этим окружностям, проходящая через точку К,
значит О_(1)K ⊥ BC

AK — биссектриса и высота треугольника АВС, значит Δ АВС — равнобедренный и [b]АВ=АС[/b].

и AK — медиана Δ АВС ⇒ BK=CK

Прямоугольные треугольники
Δ AEO_(1)

Δ APO_(2) по двум углам
( ∠ EAO_(2)- общий)
⇒ [b]∠ АО_(1)E= ∠ AO_(2)P [/b]

O_(1)EPO_(2) — прямоугольная трапеция.
O_(1)E=r
O_(2)E=2r

Δ AEO_(1)= Δ O_(1)MO_(2) ⇒ [b] AO_(1)[/b]=O_(1)O_(2)=[b]3r[/b]

По теореме Пифагора из треугольника АВК

R=AB*BC*AC/4S_( Δ ABC)= AB^2/2AK=3/2sqrt(21/8)=sqrt(6/7)

О т в е т. [m]sqrtfrac[/m] Две касающиеся внешним образом в точке окружности

📸 Видео

две окружности касаются внешним образом в точке КСкачать

две окружности касаются внешним образом в точке К

Геометрия Две окружности касаются внутренним образом в точке A, причем меньшая окружность проходитСкачать

Геометрия Две окружности касаются внутренним образом в точке A, причем меньшая окружность проходит

ОГЭ. Понятный разбор задачи №26. Две окружности радиусов 44 и 77 касаются внешним образом...Скачать

ОГЭ. Понятный разбор задачи №26. Две окружности радиусов 44 и 77 касаются внешним образом...

ОГЭ по математике. Задача 26Скачать

ОГЭ по математике. Задача 26

Две окружности разных радиусов касаются внешним образом в точке КСкачать

Две окружности разных радиусов касаются внешним образом в точке К

ЕГЭ задание 16Скачать

ЕГЭ  задание 16

ОГЭ Задание 26 Внешнее касание двух окружностейСкачать

ОГЭ Задание 26 Внешнее касание двух окружностей

Две окружности касаются внешним образом. ЕГЭ Задача 16Скачать

Две окружности касаются внешним образом. ЕГЭ Задача 16

Задание 26 Две окружности, внешнее касаниеСкачать

Задание 26 Две окружности, внешнее касание

Окружности касаются внешним образом #егэ2023 #математика #егэ #школа #shorts #fypСкачать

Окружности касаются внешним образом #егэ2023 #математика #егэ #школа #shorts #fyp

Г: Две окружности касаются друг друга внешним образом в точке С. Радиусы окружностей равны 2 и 7Скачать

Г: Две окружности касаются друг друга внешним образом в точке С. Радиусы окружностей равны 2 и 7

Геометрия Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружСкачать

Геометрия Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окруж

ОГЭ № 25. "Окружности касаются внешним образом... "Скачать

ОГЭ № 25. "Окружности касаются внешним образом... "

ОГЭ задание 26Скачать

ОГЭ задание 26

Геометрия Две окружности радиусом R = 3 см и r = 1 см касаются внешним образом. Найти расстояние отСкачать

Геометрия Две окружности радиусом R = 3 см и r = 1 см касаются внешним образом. Найти расстояние от

Геометрия Окружность радиуса 4 касается внешним образом второй окружности в точке B. ОбщаяСкачать

Геометрия Окружность радиуса 4 касается внешним образом второй окружности в точке B. Общая

Задача. Две окружности касаются внутренним образом.Скачать

Задача. Две окружности касаются внутренним образом.

Три окружности касаются прямой и друг друга внешним образомСкачать

Три окружности касаются прямой и друг друга внешним образом
Поделиться или сохранить к себе: