Два условия существования треугольника

Существующие треугольники
Содержание
  1. Определение
  2. Теорема
  3. Доказательство теоремы
  4. Треугольник — определение и основные свойства и виды треугольника
  5. Определение треугольника
  6. Высота треугольника
  7. Виды треугольника
  8. Виды треугольников по углам
  9. Виды треугольников по сторонам
  10. Свойства сторон треугольника
  11. Правило существования треугольника
  12. Свойство углов в треугольнике
  13. Элементы композиции
  14. Треугольник. Формулы определения и свойства треугольников.
  15. Определение треугольника
  16. Классификация треугольников
  17. 1.Разносторонний – треугольник, у которого все стороны имеют разную длину.
  18. 2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β
  19. 3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.
  20. 4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°
  21. 5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.
  22. 6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).
  23. Свойства треугольника
  24. 1.Свойства углов и сторон треугольника.
  25. 2.Теорема синусов.
  26. 3. Теорема косинусов.
  27. 4. Теорема о проекциях
  28. Медианы треугольника
  29. Свойства медиан треугольника:
  30. Формулы медиан треугольника
  31. 📺 Видео

Определение

Существующие треугольники — это такие треугольники,
существование которых можно доказать с помощью неравенств.

Два условия существования треугольника
Например существование треугольника, изображенного на рисунке 1,
можно доказать с помощью неравенств: AB + BC > AC, AC + BC > AB, AB + AC > BC
Если эти три неравенства истинны значит треугольник существует,
иначе он не существует.

Также существование того или иного треугольника можно проверить с
помощью одного условия: Если большая сторона треугольника меньше
суммы двух других сторон, значит треугольник существует,
иначе он не существует.

Теорема

Для доказательства того, о чем мы говорили существует теорема под названием неравенство треугольника. Формулировка теоремы:
каждая сторона треугольника меньше суммы двух других сторон.

Докажем, что каждая сторона треугольника, изображенного на рисунке 2, меньше суммы двух других сторон:

Доказательство теоремы

Два условия существования треугольника

  1. Проведем отрезок CD равный отрезку CB.
  2. △BCD — равнобедренный, значит ∠ CBD=∠CDB.
  3. Рассмотрим △ABD: ∠ ABD >∠ CBD, следовательно ∠ ABD >∠ CDB, то AB

Видео:Выживший летчик рассказал, что он увидел в Бермудском треугольникеСкачать

Выживший летчик рассказал, что он увидел в Бермудском треугольнике

Треугольник — определение и основные свойства и виды треугольника

Что такое треугольник знают дети уже в самом младшем возрасте, они умеют находить треугольник среди множества геометрических фигур. Но вот уже в школе по геометрии проходят треугольник и надо не просто узнавать треугольник, но и дать определение этому понятию.

Видео:Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Определение треугольника

Треугольник — это геометрическая фигура, окруженная тремя отрезками прямой (конечные точки каждых двух смежных отрезков соединены или перекрываются), называется треугольником. Точки пересечения отрезков называются вершинами треугольника, а сами отрезки между двумя соседними вершинами треугольника называются сторонами треугольника.

Посмотрите на треугольник на рисунке.

Два условия существования треугольника

У него три вершины — Два условия существования треугольника, Два условия существования треугольника, Два условия существования треугольникаи три стороны Два условия существования треугольника, Два условия существования треугольникаи Два условия существования треугольника. У каждого треугольника есть имя — это имя образовано вершинами треугольника. Наш треугольник зовут Два условия существования треугольника([а-бэ-цэ]). А треугольник на вот этом рисунке

Два условия существования треугольника

будут звать Два условия существования треугольника([эм-эн-ка]).

По правилам математической грамотности треугольник, как и любой другой многоугольник, следует называть, начиная с левого нижнего угла и называя все вершины по часовой стрелке.

В треугольнике можно провести особенные стороны — высоту, медиану и биссектрису. Начнем с высоты треугольника.

Видео:Треугольники. 7 класс.Скачать

Треугольники. 7 класс.

Высота треугольника

В каждом треугольнике можно провести три высоты. Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на противолежащую этой вершине сторону.

Например, в треугольнике Два условия существования треугольника, высотой будет отрезок Два условия существования треугольника.

Два условия существования треугольника

А теперь проведем из каждой вершины по высоте — получим три высоты — больше провести высот нельзя.

Два условия существования треугольника

В этом треугольнике три высоты Два условия существования треугольника, Два условия существования треугольника, Два условия существования треугольника.

Про биссектрисы и медианы поговорим в других статьях. Сейчас же давайте с вами рассмотрим каким бывает треугольник.

Видео:Второй признак равенства треугольников. 7 класс.Скачать

Второй признак равенства треугольников. 7 класс.

Виды треугольника

Виды треугольника могут быть по углам и по сторонам. То есть в первом случае вид треугольника зависит от того, какие в этом треугольнике углы, а во втором случае — какие в этом треугольнике стороны.

Виды треугольников по углам

В зависимости от того, все ли углы в треугольнике острые или есть тупой угол или угол, равный Два условия существования треугольника, треугольник бывает остроугольным, тупоугольным или прямоугольным.

Посмотрите на рисунки — перед вами три основных вида треугольника:

Два условия существования треугольника

Два условия существования треугольника

Два условия существования треугольника

Виды треугольников по сторонам

Если у треугольника все стороны равны, то такой треугольник называют равносторонним или правильным. Если у треугольника равны только две стороны, то такой треугольник называют равнобедренным.

На рисунке показаны равносторонний и равнобедренный треугольники.

Два условия существования треугольника

Два условия существования треугольника

Видео:🧪🧪🧪 ➕ Квантовая тайна сопротивления.Скачать

🧪🧪🧪 ➕ Квантовая тайна сопротивления.

Свойства сторон треугольника

Треугольник имеет важные свойства и характеристики.

Устойчивость — это важное свойство треугольника, оно вам еще пригодится в курсе физики. Но вначале мы с ним знакомимся на уроках геометрии.

Треугольник устойчив на любой своей стороне — то есть чтобы вывести его из состояния равновесия надо приложить силу.

Свойства сторон: разница между любыми двумя сторонами треугольника меньше, чем третья сторона, а также любая сторона треугольника меньше, чем сумма двух других сторон. То есть: Два условия существования треугольника

Например, пусть наш треугольник имеет длины двух сторон Два условия существования треугольника, а Два условия существования треугольникасм. В каком диапазоне будет размер третьей стороны треугольника?

Решение: согласно свойству сторон треугольника, получим:

Два условия существования треугольника

Таким образом, третья сторона треугольника может быть в диапазоне от 4 до 10 см. Или в целых числах ее длина может быть 5, 6, 7, 8 или 9 см.

Правило существования треугольника

Используя свойство сторон треугольника мы можем определить существует ли треугольник с определенными сторонами.

Для проверки сложите длины самых коротких сторон и если сумма их больше длины самой большой стороны, тогда треугольник существует.

Например, существует ли треугольник с длинами сторон 3, 7 и 15 см?

Решение: проверим по свойству сторон треугольника: складываем две самые короткие стороны 3 и 7 см: 3+7=10, а 10 7 — треугольник с такими длинами сторон существует.

Видео:Самые опасные астероиды и как с ними боротьсяСкачать

Самые опасные астероиды и как с ними бороться

Свойство углов в треугольнике

Сумма всех углов в треугольнике равна Два условия существования треугольника.

Согласно этому свойству мы всегда можем, зная два угла в треугольнике, найти его третий угол. В прямоугольном треугольнике сумма двух острых углов всегда равна Два условия существования треугольника.

Например, пусть известно, что в треугольнике Два условия существования треугольника, Два условия существования треугольника, Два условия существования треугольника, нужно найти Два условия существования треугольника.

Два условия существования треугольника

Так как сумма углов в треугольнике равна Два условия существования треугольника, то находим:

Два условия существования треугольника.

Ответ: Два условия существования треугольника.

Видео:Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.Скачать

Неравенство треугольника. Геометрия 7 класс. Доказательство. Задачи по рисункам.

Элементы композиции

Многие школьники спрашивают — а зачем нам знать про треугольник, как это может пригодиться в обычной жизни? Треугольник — простая фигура из которой можно составить более сложные. Это используется во многих сферах жизни, например, вы можете эргономично убирать в своей комнате, или красиво выкладывать бутерброды. Например, из двух равных треугольников можно составить параллелограмм.

Два условия существования треугольника

А из двух равных прямоугольных треугольником — прямоугольник или квадрат. Два треугольника могут образовать трапецию, так как на рисунке. А вот какую фигурку можно смоделировать для программируемой игры — она вся сделана из треугольников:

Два условия существования треугольника

Мы, рассмотрели самые важные свойства треугольника, и в дальнейшем изучим еще больше разных интересных свойств, закономерностей. Несмотря на свою простоту, треугольник таит в себе много загадок и открытий.

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Треугольник. Формулы определения и свойства треугольников.

В данной статье мы расскажем о классификаци и свойствах основной геометрической фигуры — треугольника. А также разберем некоторе примеры решения задач на треугольники.

Содержание:

Видео:Бермудский треугольник | Почему? Вопросы мироздания | DiscoveryСкачать

Бермудский треугольник | Почему? Вопросы мироздания | Discovery

Определение треугольника

Треугольник — это фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами. В геометрических задачах треугольник обычно изображают специальным симовлом — △, после которго пишут названия вершин треугольника напр. △ABC.

Два условия существования треугольника

Треугольник ABC (△ABC)

  • Точки A, B и C — вершины треугольника. Принято писать их большими буквами.
  • Отрезки AB, BC и СА — стороны треугольника. Обычно сторонам присваивают свои названия маленькими буквами. Имя выбирают по первой вершине каждой стороны. Напр. у стороны AB первая вершина А поэтому эта сторона называется а. Тоесть AB = a, BC = b, CА = c.
  • Стороны треугольника в местах соединения образуют три угла, которым обычно дают названия буквами греческого алфавита α, β, γ. Причем напротив стороны a лежит угол α, b — β, с — γ.

Углы треугольника, также, можно обозначать специальным символом — . После которого пишут вершины треугольника в таком порядке чтобы вершина обозначающегося угла была в серединке. Например:

Видео:100 Доказательств Существования ИнопланетянСкачать

100 Доказательств Существования Инопланетян

Классификация треугольников

Все треугольники можно разделить на несколько видов, различающихся между собой величиной углов или длинами сторон. Такая классификация позволяет выделить особенности каждого из них.

1.Разносторонний – треугольник, у которого все стороны имеют разную длину.

Два условия существования треугольника

2. Равнобедренный – треугольник, у которого длины двух сторон равны. Они называются боковыми сторонами AB и BC. Третья сторона называется основание СА. В данном треугольнике углы при основании равны ∠ α = ∠ β

Два условия существования треугольника

3.Равносторонний (или правильный) – треугольник, у которого все стороны имеют одинаковую длину. Также все его углы равны 60°.

Два условия существования треугольника

4.Остроугольный – треугольник, у которого все три угла острые, т.е. меньше 90°

Два условия существования треугольника

5.Тупоугольный – треугольник, в котором один из углов больше 90°. Два остальных угла – острые.

Два условия существования треугольника

6. Прямоугольный – треугольник, в котором один из углов является прямым, т.е. равен 90°. В такой фигуре две стороны, которые образуют прямой угол, называются катетами (AB и BC). Третья сторона, расположенная напротив прямого угла – это гипотенуза (CА).

Два условия существования треугольника

Видео:Самые известные тайны Бермудского треугольника: правда или вымысел?Скачать

Самые известные тайны Бермудского треугольника: правда или вымысел?

Свойства треугольника

1.Свойства углов и сторон треугольника.

Два условия существования треугольника

  • Сумма всех углов треугольника равна 180°:
  • Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
  • В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

2.Теорема синусов.

Стороны треугольника пропорциональны синусам противолежащих углов.

a=b=c
sin αsin βsin γ

3. Теорема косинусов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

4. Теорема о проекциях

Для остроугольного треугольника:

Видео:7 класс, 19 урок, Второй признак равенства треугольниковСкачать

7 класс, 19 урок, Второй признак равенства треугольников

Медианы треугольника

Медиана треугольника ― отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

Два условия существования треугольника

Свойства медиан треугольника:

1. Медианы треугольника пересекаются в одной точке O. (Точка пересечения медиан называется центроидом)

2. В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

AO=BO=CO=2
ODOEOF1

3. Медиана треугольника делит треугольник на две равновеликие по площади части

4. Треугольник делится тремя медианами на шесть равновеликих треугольников.

5. Из векторов, образующих медианы, можно составить треугольник.

Два условия существования треугольника

Формулы медиан треугольника

Формулы медиан треугольника через стороны:

📺 Видео

ВСЕ ТАЙНЫ БЕРМУДСКОГО ТРЕУГОЛЬНИКА [Топ Сикрет]Скачать

ВСЕ ТАЙНЫ БЕРМУДСКОГО ТРЕУГОЛЬНИКА [Топ Сикрет]

8 класс, 23 урок, Второй признак подобия треугольниковСкачать

8 класс, 23 урок, Второй признак подобия треугольников

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.Скачать

Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.

Второй признак подобия треугольников. Доказательство. 8 класс.Скачать

Второй признак подобия треугольников. Доказательство. 8 класс.

Квантовый феномен - опыт Юнга. Говорят, что физическая величина квантуется.Скачать

Квантовый феномен - опыт Юнга.   Говорят, что физическая величина квантуется.

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника
Поделиться или сохранить к себе: