Доказательство равенства треугольников с медианой

№ 7. Докажите равенство треугольников по медиане и углам, на которые медиана разбивает угол треугольника.

Сделаем дополнительные построения:

Доказательство равенства треугольников с медианой

Продолжим AD до точки K, так, что DK = AD. Продолжим A1D1 до точки K1, так, что D1K1 = A1D1. В ΔADC и ΔDBK: AD = DK

∠ADC = ∠BDK (как вертикальные) BD = DC (т.к. AD — медиана)

Таким образом, ΔADC = ΔDBK по 1-му признаку, и ∠DAC = ∠DKB АС = BK.

Доказательство равенства треугольников с медианой Решебник по геометрии за 7 класс (А.В. Погорелов, 2001 год),
задача №7
к главе «§ 3. Признаки равенства треугольников».

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Признаки равенства треугольников с использованием медианы, биссектрисы и высоты

Доказательство равенства треугольников с медианой

Признаки равенства треугольников с использованием медианы, биссектрисы и высоты. Решетников Михаил Сергеевич, Харютченко Данил Александрович. Муниципальный этап.

Видео:Признаки равенства треугольников. 7 класс.Скачать

Признаки равенства треугольников. 7 класс.

Скачать:

ВложениеРазмер
Признаки равенства треугольников с использованием медианы, биссектрисы и высоты1.67 МБ

Видео:Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Предварительный просмотр:

МУНИЦИПАЛЬНЫЙ ЭТАП XI ВСЕРОССИЙСКОГО ДЕТСКОГО КОНКУРСА
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИХ И ТВОРЧЕСКИХ РАБОТ
«ПЕРВЫЕ ШАГИ В НАУКЕ»

Секция: информационные технологии; математика;

Тема: Признаки равенства треугольников с использованием медианы, биссектрисы и высоты

Авторы: Решетников Михаил Сергеевич, МОУ «Октябрьская СОШ им. Ю. Чумака», 8 класс

Харютченко Данил Александрович, МОУ «Октябрьская СОШ им. Ю. Чумака», 8 класс

Научный руководитель: Шевченко Елена Михайловна, учитель математики МОУ «Октябрьская СОШ им. Ю. Чумака»

Место выполнения работы: Белгородская область, Белгородский район, поселок Октябрьский

Признаки равенства треугольников с использованием медианы, биссектрисы и высоты

Треугольник – одна из самых простых и загадочных геометрических фигур. Вот уже два с половиной тысячелетия открываются его новые и новые свойства. Со времен «Начал» Евклида геометрия строится на основе трех признаков равенства треугольников. Исходя из того, что в треугольнике выделяют шесть основных элементов: три внутренних угла и три соответственно противолежащие им стороны, равенство треугольников устанавливается по равенству трех из шести элементов. Три следующих признака являются фундаментом геометрии:

  1. по двум сторонам и углу между ними;
  2. по стороне и прилежащим к ней углам;
  3. по трём сторонам.

Эти признаки отличаются простотой формулировки и часто применяются при решении задач базового уровня. Рассматривая более сложные задачи, приходится фактически «изобретать велосипед», дважды или трижды применять известные признаки, конструируя из них решение. Это приводит к следующему выводу: известных трех признаков не всегда достаточно.

Если учесть, что для каждого треугольника однозначно определяются три медианы, три биссектрисы и три высоты, то число элементов треугольника увеличивается до 15. В связи с этим возникает следующая гипотеза: наряду с основными тремя признаками равенства треугольников можно сформулировать и доказать новые признаки равенства треугольников с использованием медианы, биссектрисы и высоты, знание которых поможет в решении многих геометрических задач.

Объектом данного исследования является треугольник и его элементы, в том числе медианы, биссектрисы и высоты; предмет исследования – признаки равенства треугольников.

  • сформулировать и доказать новые признаки равенства треугольников;
  • обосновать эффективность применения новых признаков равенства треугольников при решении геометрических задач.
  • проанализировать определения и свойства медианы, биссектрисы и высоты;
  • выявить зависимость между равенством отдельных элементов и равенством треугольников;
  • определить типы геометрических задач, при решении которых целесообразно применение полученных признаков.

В работе применялись методы научного исследования: анализ, сравнение, математическое моделирование.

Для доказательства новых признаков равенства треугольников использовались только первый, второй и третий признаки равенства треугольников, что обеспечивает простоту доказательства и доступность данной работы для широкого круга школьников.

Видео:Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

Медиана треугольника

Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).

Доказательство равенства треугольников с медианой

Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.

На рисунке 1 медианой является отрезок BD .

Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).

Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),

Доказательство равенства треугольников с медианой

и заметим, что (см. раздел нашего справочника «Площадь треугольника»)

Доказательство равенства треугольников с медианой

Доказательство равенства треугольников с медианой

Поскольку отрезок BD является медианой, то

Доказательство равенства треугольников с медианой

что и требовалось доказать.

Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.

Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).

Доказательство равенства треугольников с медианой

Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).

Доказательство равенства треугольников с медианой

Теперь рассмотрим четырёхугольник FEDG (рис. 5).

Доказательство равенства треугольников с медианой

Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,

Доказательство равенства треугольников с медианой

Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,

Доказательство равенства треугольников с медианой

Доказательство равенства треугольников с медианой

Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.

Следствие . Все три медианы треугольника пересекаются в одной точке.

Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).

Доказательство равенства треугольников с медианой

Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.

Определение . Точку пересечения медиан треугольника называют центроидом треугольника.

Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).

Доказательство равенства треугольников с медианой

Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна Доказательство равенства треугольников с медианойплощади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).

💡 Видео

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать

Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)

Первый признак равенства треугольников. 7 класс.Скачать

Первый признак равенства треугольников. 7 класс.

7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников

Признаки равенства треугольников. Практическая часть. 7 класс.Скачать

Признаки равенства треугольников. Практическая часть. 7 класс.

Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№14 - Второй и третий признаки равенства треугольников.)

Геометрия. 7 класс. Теоремы. Т7. Второй признак равенства треугольников.Скачать

Геометрия. 7 класс. Теоремы. Т7. Второй признак равенства треугольников.

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать

Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)

8. Медиана треугольника и её свойства.Скачать

8. Медиана треугольника и её свойства.

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

Доказательство 3 его признака равенства треугольниковСкачать

Доказательство 3 его признака равенства треугольников

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Второй признак равенства треугольников. 7 класс.Скачать

Второй признак равенства треугольников. 7 класс.

№114. Докажите, что в равных треугольниках медианы, проведенные к равным сторонам, равны.Скачать

№114. Докажите, что в равных треугольниках медианы, проведенные к равным сторонам, равны.

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Первый признак равенства треугольников | Теорема + доказательствоСкачать

Первый признак равенства треугольников | Теорема + доказательство
Поделиться или сохранить к себе: