Рассмотрим два треугольника KLM и TRP (рис.1) и введём следующие обозначения.
длины сторон треугольника KLM , расположенные в порядке возрастания.
длины сторон треугольника TRP , расположенные в порядке возрастания.
Переобозначим вершины треугольников KLM и TRP так, как показано на рисунке 2.
На рисунке 2 треугольник KLM обозначается как треугольник A1B1C1 , а треугольник TRP обозначается как треугольник A2B2C2 .
вершины A1 и A2 , B1 и B2 , C1 и C2 называют сходственными вершинами ,
стороны A1B1 и A2B2 , A1C1 и A2C2 , B1C1 и B2C2 называют сходственными сторонами ,
углы A1 и A2 , B1 и B2 , C1 и C2 называют сходственными углами
Определение 2 . Треугольники A1B1C1 и A2B2C2 называют подобными треугольниками, если их сходственные углы равны, а сходственные стороны пропорциональны.
а, во-вторых, существует положительное число k , такое, что справедливы равенства:
a1 = k a2 , b1 = k b2 , c1 = k c2 .
(1)
Видео:Подобие в прямоугольных треугольникахСкачать
Признаки подобия треугольников
Название признака
Рисунок
Формулировка признака
Признак подобия треугольников по двум сторонам и углу между ними
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны.
Признак подобия треугольников по двум углам
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Признак подобия треугольников по трём сторонам
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны
Признак подобия треугольников по двум сторонам и углу между ними
Формулировка признака подобия:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключённые между этими сторонами равны, то такие треугольники подобны.
Признак подобия треугольников по двум углам
Формулировка признака подобия:
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Признак подобия треугольников по трём сторонам
Формулировка признака подобия:
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны
Видео:Подобие прямоугольных треугольников и его применениеСкачать
Признаки подобия прямоугольных треугольников
Название признака
Рисунок
Формулировка признака
Признак подобия прямоугольных треугольников по двум катетам
Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по острому углу
Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по гипотенузе и катету
Если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по двум катетам
Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по острому углу
Если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Признак подобия прямоугольных треугольников по гипотенузе и катету
Если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Следствие 1 . Прямая, пересекающая треугольник и параллельная стороне треугольника, отсекает от этого треугольника подобный треугольник (рис. 3).
Следствие 2 . Отношение площадей подобных треугольников равно квадрату коэффициента подобия (рис. 4)
Видео:Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать
Подобие прямоугольных треугольников
Подобие прямоугольных треугольников обычно доказывают, используя не общие признаки, а специальные признаки подобия для прямоугольных треугольников.
Признаки подобия прямоугольных треугольников
1- й признак подобия прямоугольных треугольников
( подобие прямоугольных треугольников по острому углу)
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
— прямоугольные (∠C=90º, ∠C=90º).
(по острому углу).
2- й признак подобия прямоугольных треугольников
( подобие прямоугольных треугольников по двум катетам)
Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны.
— прямоугольные (∠C=90º, ∠C=90º).
(по двум катетам).
3- й признак подобия прямоугольных треугольников
( подобие прямоугольных треугольников по катету и гипотенузе)
Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны.
— прямоугольные (∠C=90º, ∠C=90º).
(по катету и гипотенузе).
Из подобия прямоугольных треугольников следуют соотношения между высотой, проведённой к гипотенузе, гипотенузой, катетами и проекциями катетов на гипотенузу, а также свойство биссектрисы треугольника.
Подобие – это следующее понятие после равенства: как в математике после сложения идет умножение, так в геометрии после равенства треугольников изучают подобие. В реальной жизни подобие помогает, за счет вычислений по тени, определять реальные размеры зданий или высоких сооружений. В задачах на эту тему, благодаря подобию, можно найти значение сторон, воспользовавшись знакомым отношением.
Подобными называются треугольники, отношение сторон которых соответственно равны. Предположим треугольник АВС равен треугольнику DРН. Это значит, что:
k это коэффициент подобия.
Для обычного треугольника существует три признака подобия. Именно через них доказываются признаки подобия прямоугольных треугольников.
Первый признак подобия: по двум углам. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
Рис. 1. Первый признак подобия.
Второй признак: по трем сторонам. Если три стороны одного треугольника пропорциональны соответственным сторонам другого треугольника, то такие треугольники подобны.
Рис. 2. Второй признак подобия.
Третий признак: по двум сторонам и углу. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами равны, то такие треугольники подобны.
Рис. 3. Третий признак подобия.
Эти определения необходимо знать, чтобы без проблем разобраться с подобием прямоугольных треугольников.
Видео:Второй и третий признак подобия прямоугольных треугольников.Скачать
Признаки подобия прямоугольных треугольников
Первый признак по острому углу: если острый угол одного прямоугольного треугольника равен острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники подобны.
Доказать этот признак очень просто. Достаточно вспомнить, что прямоугольным треугольником называется треугольник, который содержит в себе прямой угол. Значит, у двух прямоугольных треугольников, один из углов всегда равен другому. А один из острых углов так же равен соответственному углу в другом треугольнике. Значит, в таких треугольниках есть два равных между собой угла, и треугольники подобны по первому признаку подобия.
Второй признак: по двум катетам. Если два катета одного прямоугольного треугольника пропорциональны двум катетам другого прямоугольного треугольника, то такие треугольники подобны. Между двумя катетами всегда заключен прямой угол. Значит, у нас имеется две пропорциональные стороны и равные углы между ними. Тогда треугольники подобны по третьему признаку подобия.
Третий признак: по катету и гипотенузе. Если катет и гипотенуза одного прямоугольного треугольника пропорциональны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники подобны. Для доказательства признака нужно вспомнить понятие косинуса. Косинус угла это отношения прилежащего катета к гипотенузе.
При этом по условию: $$<ACover>=<BCover>$$. Из условия выразим ВС и подставим в значение косинуса.
$$cos(ACB)=<BCover>=<PH*<ACover>over AC>=<PHover>$$ – то есть косинусы углов равны, оба угла острые, значит и углы равны. Тогда треугольники подобны по двум сторонам и углу между ними.
Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать
Что мы узнали?
Мы разобрали понятие подобия, выделили все определения и теоремы, необходимые для доказательства трех признаков подобия прямоугольных треугольников. Мы показали, что эти признаки лишь следствие основных, т.е. эти свойства созданы чтобы упростить и сделать быстрее решение. А это значит, что если вдруг вы забыли признаки для прямоугольного треугольника, то всегда можно воспользоваться общими.