Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).
Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.
На рисунке 1 медианой является отрезок BD .
Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).
Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),
и заметим, что (см. раздел нашего справочника «Площадь треугольника»)
Поскольку отрезок BD является медианой, то
что и требовалось доказать.
Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.
Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).
Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).
Теперь рассмотрим четырёхугольник FEDG (рис. 5).
Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,
Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,
Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.
Следствие . Все три медианы треугольника пересекаются в одной точке.
Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).
Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.
Определение . Точку пересечения медиан треугольника называют центроидом треугольника.
Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).
Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).
Видео:Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.Скачать
Медиана делит треугольник
Медиана делит треугольник на два равновеликих треугольника.
Равновеликие треугольники — это треугольники, имеющие равные площади.
То есть медиана делит исходный треугольник на два треугольника с равными площадями (или медиана делит площадь треугольника пополам).
Дано : ABC,
∠AMB +∠CMB=180º (как смежные).
Что и требовалось доказать.
Проведём высоту BH.
Так как AM=CM, то
Что и требовалось доказать.
Видео:Медиана делит треугольник на два равновеликих. ДоказательствоСкачать
2 Comments
а можно попроще? без син, мы их не изучали
Alex, утверждение доказано двумя способами.
Видео:8. Медиана треугольника и её свойства.Скачать
Медиана делит площадь треугольника пополам
Медиана делит площадь треугольника пополам
Два треугольника называются равновеликими. Если они имеют одинаковую площадь.
Теорема 1. Медиана делит треугольник на два равновеликих треугольника.
Пусть ВМ – медиана треугольника АВС. Докажем, что
.
Проведем высоту BH треугольника АВС. Тогда
,
.
Так как ВМ – медиана треугольника АВС, то АМ=МС, поэтому
.
,
.
Что и требовалось доказать.
Теорема 2. Медианы треугольника разбивают его на шесть равновеликих треугольников.
Доказательство можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».
Из теоремы, в частности следует, что если точку пересечения медиан треугольника соединить со всеми его вершинами, то треугольник разобьется на три равновеликие части.
Задача 1 Две медианы треугольника взаимно перпендикулярны и равны соответственно 3 и 4. Найти площадь треугольника.
Пусть в треугольнике АВС медианы АМ и ВЕ равны 3 и 4 соответственно, , К – точка пересечения медиан.
,
.
Так как треугольник АВК прямоугольный с прямым углом ВКА, то .
Так как медиан делят треугольник на 6 равновеликих частей, то .
Задача 2 Медианы треугольника равны 6, 8 и 10, найти площадь треугольника.
Пусть медианы АM, BE и CD данного треугольника соответственно равны 6, 8 и 10, К – точка их пересечения. Отложим на продолжении луча ВЕ за точку Е отрезок EF=KE. Соединим точки С, F и A.
Рассмотрим треугольник KAF.
,
то
.
Далее, , так как CKAE – параллелограмм (по признаку параллелограмма: ели диагонали четырехугольника делятся точкой пересечения пополам, до данный четырехугольник параллелограмм), получаем .
Так как , то есть , то по обратной теореме Пифагора (если квадрат одной стороны треугольника равен сумме квадратов двух других его сторон, то треугольник прямоугольный) треугольник KAF – прямоугольный и .
Вычислим площадь треугольника AKF:
.
Теперь сравним площади треугольников AKF и АВС: так как AE – медиана треугольника AKF, то
, ,
.
.
Отметим, что задачу можно решить по-другому, если воспользоваться тем фактом, что:
площадь треугольника, образованного медианами данного треугольника составляет от площади самого треугольника.
Доказательство можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».
Вопросы для самопроверки:
1. Какие треугольники называются равновеликими?
2. Площадь треугольника равна S. Чему равна площадь каждого из треугольников, на которые его разбивает медиана, проведенная к какой-либо стороне этого треугольника?
3. На сколько равновеликих частей разбивают треугольник проведенные в нем три медианы?
4. Площадь треугольника равна S. Цент тяжести этого треугольника соединили с его вершинами. Чему равна площадь каждого из получившихся треугольников?
5. Площадь треугольника равна 48, чему равна площадь треугольника, составленного из медиан этого треугольника?
6. Площадь треугольника, составленного из медиан некоторого треугольника равна 24, чему равна площадь треугольника?
Задачи для самостоятельного решения:
1. Две медианы треугольника взаимно перпендикулярны и равны соответственно 6 и 8. Найти площадь треугольника.
2. Медианы треугольника равны 3, 4 и 5 найти площадь треугольника.
3. Треугольник АВС, стороны которого 13 см, 14 см и 15 см, разбит на три треугольника отрезками, соединяющими точку М пересечения медиан треугольника с вершинами треугольника. Найти площадь треугольника ВМС.
4. Две стороны треугольника равны 10 и 12, а медиана, проведённая к третьей, равна 5. Найдите площадь треугольника.
🔍 Видео
Точка пересечения медиан в треугольникеСкачать
Свойство биссектрисы треугольника с доказательствомСкачать
Доказать, что медиана, проведенная к гипотенузе, равна половине гипотенузыСкачать
🔥 Свойства МЕДИАНЫ #shortsСкачать
О том, как медиана делит треугольник на 2 равных по площадиСкачать
22 Медианы треугольника пересекаются в одной точкеСкачать
Почему медиана делит треугольник на 2 равновеликих? #parta #егэ #базоваяматематика #shortsСкачать
ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать
Высота, биссектриса, медиана. 7 класс.Скачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Длина медианы треугольникаСкачать
№110. Докажите, что если медиана треугольника совпадает с его высотой, то треугольникСкачать
Как доказать теорему о медианах треугольника с использованием методов векторной алгебры?Скачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Все факты о медиане треугольника для ЕГЭСкачать
Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать