Треугольник − это геометрическая фигура, образованная соединением отрезками трех, не лежащих на одной прямой точек .
Эти точки называются вершинами треугольника. Отрезки, соединяющие эти точки называются сторонами треугольника.
Треугольник обозначается знаком ⊿. Например треугольник ABC обозначается так: ⊿ABC. Этот же треугольник можно обозначать так: ⊿BAC, ⊿CBA и т.д.
Углы треугольника обозначают так ∠BAC, ∠ABC, ∠BCA. Эти же углы коротко обозначают также ∠A, ∠B, ∠C, соответственно. Углы треугольника принято также обозначать греческими буквами α, β, γ и т.д. Стороны тркеугольника обозначают так AB, BC, AC. Принято также стороны обозначать одной строчной буквой, причем сторона напротив угла A ,обозначается буквой a, сторона напротив угла B− b, сторона напротив угла C− c. Сумма трех сторон треугольника называется периметром треугольника.
Как известно, две треугольники называются равными, если при наложении друг на друга их можно совместить. На Рис.2 представлены два треугольника ABC и A1B1C1. Треугольник ABC можно наложить на треугольник A1B1C1 так, чтобы вершины и стороны этих треугольников попарно совместились. Очевидно, что при этом совместятся и соответствующие углы.
Вышеизложенное можно сформулировать так:
Если два треугольника равны, то элементы (стороны и углы) одного треугольника соответственно равны элементам другого треугольника. Равенство треугольников ABC и A1B1C1 обозначается так:
Видео:Геометрия 7 класс (Урок№9 - Треугольник.)Скачать
Первый признак равенства треугольников
Теорема 1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1C1 (Рис.3). Пусть AB=A1B1, AС=A1С1 и ∠A=∠A1. Докажем, что .
Видео:Признаки равенства треугольников. 7 класс.Скачать
Второй признак равенства треугольников
Теорема 2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1С1 (Рис.4). Пусть AB=A1B1, ∠A=∠A1, ∠B=∠B1. Докажем, что .
Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
Третий признак равенства треугольников
Теорема 3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1С1. Пусть AB=A1B1, AC=A1C1 и BC=B1C1. Докажем, что . Приложим треугольник ABC к треугольнику A1B1С1 так, чтобы вершина A совмещалась с вершиной A1, вершина B совмещалась с вершиной B1, а вершины С и С1 находились по разные стороны от прямой A1B1.
Возможны три варианта: луч CC1 проходит внутри угла ACB(Рис.6); луч CC1 совпадает с одной из сторон угла ACB (Рис.7); луч CC1 проходит вне угла ACB(Рис.8). Рассмотрим эти три случая по отдельности.
. |
Имеем AC=A1C1, BC=B1C1 ∠ACB=∠A1C1B1 и по первому признаку равенства треугольников . Теорема доказана.
Вариант 2 (Рис.7). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольник BСС1 равнобедренный. Тогда ∠1=∠2. Имеем: AC=A1C1, BC=B1C1, ∠1=∠2 и по первому признаку равенства треугольников . Теорема доказана.
Вариант 3 (Рис.8). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольники AСС1 и BСС1 равнобедренные. Тогда ∠1=∠2 и и, следовательно:
. |
Имеем AC=A1C1, BC=B1C1 и по первому признаку равенства треугольников . Теорема доказана.
Видео:7 класс, 15 урок, Первый признак равенства треугольниковСкачать
Задачи и решения
Задача 1. На сторонах угла CAD отмечены точки B и E так, что точка B лежит на отрезке AC, а точка E − на отрезке AD, причем AC=AD и AB=AE. Докажите, что ∠CBD=∠DEC (Рис.9).
Доказательство. AC=AD, AE=AB, ∠CAD общий для треугольников CAE и DAB. Тогда, по первому признаку равенства треугольников (теорема 1) ⊿ACE=⊿ADB. Следовательно ∠DBA=∠AEC. Поскольку углы CBD и DBA смежные, то CBD=180°−∠DBA. Аналогично CED=180°-∠AEC. То есть ∠CBD=∠DEC. Конец доказательства .
Задача 2. По данным рисунка рис.10 докажите, что OP=OT, ∠P=∠T
Доказательство. OC=OB, ∠TCO=∠PBO=90°. Углы TOC и POB вертикальные (следовательно равны) тогда, повторому признаку равенства треугольников (теорема 2), ⊿TCO=⊿PBO. Конец доказательства .
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Существующие треугольники
Определение
Существующие треугольники — это такие треугольники,
существование которых можно доказать с помощью неравенств.
Например существование треугольника, изображенного на рисунке 1,
можно доказать с помощью неравенств: AB + BC > AC, AC + BC > AB, AB + AC > BC
Если эти три неравенства истинны значит треугольник существует,
иначе он не существует.
Также существование того или иного треугольника можно проверить с
помощью одного условия: Если большая сторона треугольника меньше
суммы двух других сторон, значит треугольник существует,
иначе он не существует.
Теорема
Для доказательства того, о чем мы говорили существует теорема под названием неравенство треугольника. Формулировка теоремы:
каждая сторона треугольника меньше суммы двух других сторон.
Докажем, что каждая сторона треугольника, изображенного на рисунке 2, меньше суммы двух других сторон:
Доказательство теоремы
- Проведем отрезок CD равный отрезку CB.
- △BCD — равнобедренный, значит ∠ CBD=∠CDB.
- Рассмотрим △ABD: ∠ ABD >∠ CBD, следовательно ∠ ABD >∠ CDB, то AB
Видео:Первый признак равенства треугольников. 7 класс.Скачать
Треугольники
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке впервые познакомимся с треугольником – важнейшей фигурой геометрии, строить которую в режиме онлайн научит педагог. Вначале дается определение треугольника и его основных элементов: вершин, сторон, углов. Далее рассматривается понятие равных треугольников. В конце урока разбираются задачи, посвященные противолежащим углу сторонам, прилежащим углам, взаимосвязи элементов и расчёта периметра.
🔥 Видео
Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Равнобедренный треугольник. Определение. Свойства. Теоремы и доказательства.Скачать
Корнеев С.А. - Комбинаторика и сложность вычислений - 13. Вычисление биномиальных коэффициентовСкачать
Второй признак равенства треугольников. 7 класс.Скачать
Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать
Геометрия. 7 класс. Теоремы. Т3. Первый признак равенства треугольников.Скачать
Третий признак равенства треугольников (доказательство) - геометрия 7 классСкачать
Геометрия 7 класс (Урок№10 - Первый признак равенства треугольников.)Скачать
Треугольники. 7 класс.Скачать
Признаки равенства треугольников. Практическая часть. 7 класс.Скачать
Третий признак равенства треугольников | Теорема + доказательствоСкачать
Равнобедренный треугольник. 7 класс.Скачать
Первый признак равенства треугольников | Теорема + доказательствоСкачать