Доказать что середины равных хорд лежат на одной окружности

Докажите, что середины равных хорд окружности расположены на окружности с тем же центром.

Видео:Доказать, что точки лежат на одной окружностиСкачать

Доказать, что точки лежат на одной окружности

Ваш ответ

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,029
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Равные хорды

Выясним, какими свойствами обладают равные хорды и равные дуги.

Равные хорды равноудалены от центра окружности.

Доказать что середины равных хорд лежат на одной окружностиДано : окр. (O;R), AB и CD — хорды,

Доказать что середины равных хорд лежат на одной окружностиСоединим центр окружности с концами хорд.

I. Рассмотрим треугольники AOB и COD.

1) AB=CD (по условию)

2) OA=OB=OC=OD (как радиусы).

Следовательно, ∆AOB = ∆COD (по трём сторонам).

Из равенства треугольников следует равенство соответствующих углов: ∠A=∠C.

II. Рассмотрим прямоугольные треугольники AOF и COK.

2) ∠A=∠C (по доказанному).

Из равенства треугольников следует равенство соответствующих сторон: OF=OK.

Что и требовалось доказать .

Если хорды равноудалены от центра окружности, то они равны.

Доказать что середины равных хорд лежат на одной окружностиДано: окр. (O;R), AB и CD — хорды,

Соединим центр окружности с концами хорд.

I. Рассмотрим прямоугольные треугольники OKD и OFB.

1)OF=OK (по условию)

2)OD=OB (как радиусы).

Из равенства треугольников следует равенство соответствующих сторон:

II. Рассмотрим треугольники AOB и COD.

Так как OA=OB=OC=OD (как радиусы), треугольники AOB и COD — равнобедренные с основаниями AB и CD и высотами OK и OF соответственно.

По свойству равнобедренного треугольника, OK и OF — медианы, то есть AF=BF, CK=DK, откуда AB=CD.

Что и требовалось доказать.

Равные хорды стягивают равные дуги.

Доказать что середины равных хорд лежат на одной окружности

Дано : окр. (O;R), AB и CD — хорды, AB=CD,

Доказать что середины равных хорд лежат на одной окружностиСоединим центр окружности с концами хорд.

Рассмотрим треугольники AOB и COD

1) AB=CD (по условию)

2) OA=OB=OC=OD (как радиусы).

Следовательно, ∆AOB = ∆COD (по трём сторонам).

Из равенства треугольников следует равенство соответствующих углов: ∠AOB=∠COD.

Значит и дуги, на которые опираются эти центральные углы, также равны: ∪AB=∪CD

Что и требовалось доказать .

Хорды, стягивающие равны дуги, равны.

Доказать что середины равных хорд лежат на одной окружностиДано: окр. (O;R), AB и CD — хорды,

Соединим центр окружности с концами хорд.

Рассмотрим треугольники AOB и COD

Так как OA=OB=OC=OD (как радиусы), то треугольники AOB и COD — равнобедренные с основаниями AB и CD соответственно.

Так как ∪AB=∪CD (по условию), то ∠AOB=∠COD.

Из равенства треугольников следует равенство соответствующих сторон: AB=CD.

Видео:Четыре точки на окружности | ЕГЭ-2017. Задание 16. Математика. Профильный уровень| Борис ТрушинСкачать

Четыре точки на окружности | ЕГЭ-2017. Задание 16. Математика. Профильный уровень| Борис Трушин

Хорды и дуги

Докажем ряд теорем, устанавливающих зависимость между хордами и их дугами в одной и той же окружности или в равных окружностях.

При этом будем иметь в виду дуги, меньшие полуокружности.

Теорема 1. Равные дуги стягиваются равными хордами.

Пусть дуга АВ равна дуге СК. Требуется доказать, что и хорда АВ равна хорде СК (рис. 314).

Доказать что середины равных хорд лежат на одной окружности

Доказательство. Соединим концы хорд с центром окружности — точкой О. Полученные треугольники АОВ и КОС равны, так как имеют по две соответственно равные стороны (радиусы одной окружности) и по равному углу, заключённому между этими сторонами (эти углы равны, как центральные, соответствующие равным дугам). Следовательно, АВ = СК.

Теорема 2 (обратная). Равные хорды стягивают равные дуги.

Пусть хорда АВ равна хорде СК. Требуется доказать, что дуга АВ равна дуге СК (рис. 314).

Доказательство. Соединим концы хорд с центром окружности — точкой О. Полученные треугольники АОВ и КОС равны по трём соответственно равным сторонам. Следовательно, равны углы АОВ и СОК; но углы эти центральные, соответствующие дугам АВ и СК; из равенства этих углов следует равенство дуг: (breve = breve).

Теорема 3. Большая дуга стягивается и большей хордой.

Пусть дуга АВ больше дуги СК (рис. 315).

Доказать что середины равных хорд лежат на одной окружности

Требуется доказать, что хорда АВ больше хорды СК.

Доказательство. Передвинем по окружности дугу СК так, чтобы точка К совместилась с точкой А, тогда точка С займёт положение С’ на дуге АВ между точками Aи В, дуга СК примет положение дуги АС’, а хорда СК примет положение хорды АС’. Проведём радиусы в точки A, В и С’. Опустим из центра О перпендикуляры ОЕ и ОD на хорды АВ и АС’. В треугольнике ОFE отрезок ОЕ — катет, а отрезок ОF — гипотенуза, поэтому OF > ОЕ, а потому и OD > OE.

Рассмотрим теперь треугольники ОАD и ОАЕ. В этих треугольниках гипотенуза ОА общая, а катет ОЕ меньше катета ОD, тогда по следствию из теоремы Пифагора катет АЕ больше катета АD. Но эти катеты составляют половины хорд АВ и АС’, значит, и хорда АВ больше хорды АС’. Вследствие равенства хорд АС’ и СК получаем
АВ > СК.

Теорема 4 (обратная). Большая хорда стягивает и большую дугу.

Пусть хорда А В больше хорды СК.

Требуется доказать, что дуга АВ больше дуги СК (рис. 315). Между дугами АВ и СК может существовать только одно из трёх следующих соотношений:

Но дуга AВ не может быть меньше дуги СК, так как тогда по прямой теореме хорда АВ была бы меньше хорды СК, а это противоречит условию теоремы.

Дуга АВ не может быть равна дуге СК, так как тогда хорда АВ равнялась бы хорде СК, а это тоже противоречит условию. Следовательно, (breve > breve).

Свойство дуг, заключенных между параллельными хордами

Теорема. Дуги, заключённые между параллельными хордами, равны.

Пусть хорда AB параллельна хорде СD (рис. 316).

Доказать что середины равных хорд лежат на одной окружности

Требуется доказать, что (breve = breve). Проведём диаметр MN ⊥ AB. Так как CD || AB, то MN ⊥ CD.
Перегнём чертёж по диаметру MN так, чтобы правая часть совпала с левой.

Тогда точка В совпадёт с точкой А, так как они симметричны относительно оси MN (AB ⊥ MN по построению и AK = KB).

Аналогично, точка D совпадёт с точкой С. Отсюда (breve = breve).

Свойство дуг, заключённых между касательной и параллельной ей хордой

Теорема. Дуги, заключённые между касательной и параллельной ей хордой, равны.

Пусть касательная АВ и хорда СD параллельны. Точка Е — точка касания прямой АВ с окружностью О (рис. 320).

Доказать что середины равных хорд лежат на одной окружности

Требуется доказать, что (breve = breve).

Для доказательства соединим точку касания Е с центром круга.

OE ⊥ AB, а так как СD || АВ, то OE ⊥ CD, а перпендикуляр к хорде, проведённый из центра той же окружности, делит стягиваемую ею дугу пополам.

Следовательно, (breve = breve).

Видео:✓ Степень точки в ЕГЭ | Резерв досрока ЕГЭ-2022. Задание 16. Профильный уровень | Борис ТрушинСкачать

✓ Степень точки в ЕГЭ | Резерв досрока ЕГЭ-2022. Задание 16. Профильный уровень | Борис Трушин

Диаметр, перпендикулярный к хорде

Теорема 1. Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею дуги пополам.

Пусть диаметр AB перпендикулярен к хорде CD (черт. 312). Требуется доказать, что
$$ CE = ED, breve = breve, breve = breve $$

Доказать что середины равных хорд лежат на одной окружности

Соединим точки С и D с центром окружности О. В равнобедренном треугольнике СОD отрезок ЕО является высотой, проведённой из вершины О на основание CD; следовательно, ОЕ является и медианой и биссектрисой, т. е. СЕ = ЕD и ∠1 = ∠2. Но ∠1 и ∠2 суть центральные углы. Отсюда равны и соответствующие им дуги, а именно
$$ breve = breve $$
Дуги CA и ВА также равны между собой, как дополняющие равные дуги до полуокружности.

Теорема 2 (обрaтная). Диаметр, проведённый через середину хорды, не проходящей через центр, перпендикулярен к ней и делит дуги, стягиваемые хордой, пополам.

Пусть диаметр AB делит хорду CD пополам. Требуется доказать, что AB ⊥ CD,

Доказать что середины равных хорд лежат на одной окружности

Соединим точки С и В с центром круга. Получим равнобедренный треугольник СОD, в котором ОК является медианой, а значит, и высотой. Следовательно, AB⊥CD, а отсюда (по теореме 1) следует, что
$$ breve = breve; breve = breve $$

Теорема 3 (обратная). Диаметр, проведённый через середину дуги, делит пополам хорду, стягивающую эту дугу, и перпендикулярен к этой хорде.

Пусть диаметр AB делит дугу СВD пополам (черт. 313). Требуется доказать, что

Соединим центр круга О с точками С и D. В равнобедренном треугольнике СОD отрезок ОК является биссектрисой угла СОD, так как по условию теоремы (breve) = (breve), поэтому ОК будет и медианой и высотой этого треугольника. Следовательно, диаметр AB проходит через середину хорды и перпендикулярен к ней.

🔍 Видео

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать

№8. Верно ли утверждение: а) если две точки окружности лежат в плоскости

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать

✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис Трушин

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Условие принадлежности четырёх точек одной окружностиСкачать

Условие принадлежности четырёх точек одной окружности

ЕГЭ задание 16 Внутреннее касание двух окружностейСкачать

ЕГЭ задание 16 Внутреннее касание двух окружностей

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)Скачать

Геометрия 7 класс (Урок№16 - Окружность. Задачи на построение.)

Окружность. 7 класс.Скачать

Окружность. 7 класс.

Решение задач на окружность явную и вспомогательнуюСкачать

Решение задач на окружность явную и вспомогательную

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.
Поделиться или сохранить к себе: