Доказать что прямые параллельны в тетраэдре

10 класс. Геометрия. Параллельные плоскости.

10 класс. Геометрия. Параллельные плоскости.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Задай свой вопрос по этому материалу!

Поделись с друзьями

Комментарии преподавателя

Видео:Геометрия 10 класс (Урок№7 - Тетраэдр и параллелепипед.)Скачать

Геометрия 10 класс (Урок№7 - Тетраэдр и параллелепипед.)

1. Тетраэдр и его элементы

Как построить тетраэдр? Возьмем произвольный треугольник АВС. Произвольную точку D, не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Доказать что прямые параллельны в тетраэдре

Рис. 1. Тетраэдр АВСD

Замечание: можно принять плоскость АВС за основание тетраэдра, и тогда точка D является вершиной тетраэдра. Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ – это пересечение плоскостей АВD и АВС. Каждая вершина тетраэдра – это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС, АВD, АDС. Точка А – это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВСАВDАСD.

Тетраэдр определение

Итак, тетраэдр — это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра — линия перечесения двух плоскостей тетраэдра.

Видео:10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

2. Задача 1 на построение тетраэдра

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек – это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

3. Задача 2 Построить сечение тетраэдра плоскостью

Дан тетраэдр АВСD. Точка M принадлежит ребру тетраэдра АВ, точка N принадлежит ребру тетраэдра ВD и точка Р принадлежит ребру DС (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP.

Доказать что прямые параллельны в тетраэдре

Рис. 2. Рисунок к задаче 2 — Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим грань тетраэдра DВС. В этой грани точки N и P принадлежат грани DВС, а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP – это линия пересечения двух плоскостей: плоскости грани DВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости DВС. Найдем точку пересечения прямых NP и ВС. Обозначим ее Е (Рис. 3.).

Доказать что прямые параллельны в тетраэдре

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP, так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP.

Также точка Е лежит в плоскости АВС, потому что она лежит на прямой ВС из плоскости АВС.

Получаем, что ЕМ – линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях — АВС и MNP. Соединим точки М и Е, и продолжим прямую ЕМ до пересечения с прямой АС. Точку пересечения прямых ЕМ и АС обозначим Q.

Итак, в этом случае NPQМ — искомое сечение.

Доказать что прямые параллельны в тетраэдре

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC. Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС, то прямая NP параллельна всей плоскости АВС.

Искомая плоскость сечения проходит через прямую NP, параллельную плоскости АВС, и пересекает плоскость по прямой МQ. Значит, линия пересечения МQ параллельна прямой NP. Получаем, NPQМ — искомое сечение.

Видео:10 класс, 12 урок, ТетраэдрСкачать

10 класс, 12 урок, Тетраэдр

4. Задача 3 Построить сечение тетраэдра плоскостью

Точка М лежит на боковой грани АDВ тетраэдра АВСD. Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС.

Доказать что прямые параллельны в тетраэдре

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ, АС, ВС.
В плоскости АВD через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВD. Аналогично в плоскости АСD через точку Р проведем прямую РR параллельно АС. Получили точку R. Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС, значит, плоскости АВС и РQR параллельны. РQR – искомое сечение. Задача решена.

Видео:7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

5. Задача 4

Дан тетраэдр АВСD. Точка М – точка внутренняя, точка грани тетраэдра АВD. N – внутренняя точка отрезка DС (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС.

Доказать что прямые параллельны в тетраэдре

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость DМN. Пусть прямая DМ пересекает прямую АВ в точке К (Рис. 7.). Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.

Доказать что прямые параллельны в тетраэдре

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Видео:Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

6. Задача 5 Построить сечение тетраэдра плоскостью

Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р – внутренняя точка грани АВС. N – внутренняя точка ребра DС (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р.

Доказать что прямые параллельны в тетраэдре

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС. В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим DМ и получаем точку F. Проводим СF и на пересечении MN получаем точку К.

Доказать что прямые параллельны в тетраэдре

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2. Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р2NМ1. Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС. Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямаяР1Р2 параллельна данной прямой MN (Рис. 10.).

Доказать что прямые параллельны в тетраэдре

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р1М и получим точку М1. Р1Р2NМ1 – искомое сечение.

Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

7. Итоги урока по теме «Тетраэдр», «Ребро тетраэдра», «Грани тетраэдра», «Поверхность тетраэдра», «Вершины тетраэдра»

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

Доказать что прямые параллельны в тетраэдре

Решение:
К, Е, М — середины рёбер АС, ДС, ВС соответственно(по условию), следовательно: КМ, МЕ и КЕ-среднии линии треугольниковАВС, ВДС и АДС соответственно, а это означает, что КМ параллельно АВ, МЕ параллельно ВД, КЕ параллельно АД. Итак, отсюда делаем вывод, что плоскости КЕМ и АДВ параллельны. Что и требовалось доказать.
Найдём площадь треугольника АДВ. Нам известно, что КМ, МЕ и КЕ-среднии линии треугольниковАВС, ВДС и АДС соответственно, а это означает, что КМ=1/2 *АВ, МЕ=1/2 * ВД, Ке=1/2 *АД. Треугольник КЕМ подобен треугольнику АВД с коэффициентом 1/2, значит площадь треугольника КЕМ S(KEM)=(1/2)^2 *S(ABД)=1/4 * S(ABД). S(ABД)=4*S(KEM)=4*27=108 (см2)

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Доказать что прямые параллельны в тетраэдре

ТЕТРАЭДР. ВИДЫ ТЕТРАЭДРОВ

Тетраэдр является одним из простейших многогранников, гранями которого являются четыре треугольника. Его можно считать пространственным аналогом треугольника. Рассмотрим свойства треугольников и аналогичные им свойства тетраэдров.
Теорема 1. Биссектрисы треугольника пересекаются в одной точке – центре вписанной окружности.
Теорема 1′. Биссектральные плоскости двугранных углов тетраэдра пересекаются в одной точке – центре вписанной сферы.
Доказательство. Пусть ABCD – тетраэдр. Пересечением биссектральных плоскостей двугранных углов с ребрами AB, AC,и BC (рис. 1) является точка O, равноудаленная от всех граней тетраэдра. Следовательно, эта точка принадлежит биссектральным плоскостям остальных двугранных углов тетраэдра и является центром вписанной сферы.

Теорема 2. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке – центре описанной окружности.
Теорема 2′. Плоскости, проходящие через середины ребер тетраэдра и перпендикулярные этим ребрам, пересекаются в одной точке – центре описанной сферы.
Доказательство. Пусть ABCD – тетраэдр. Пересечением плоскостей, проходящих через середины ребер AD, BD, и CD является точка O, равноудаленная от всех вершин тетраэдра. Следовательно, эта точка принадлежит остальным плоскостям и является центром описанной сферы.
Теорема 2″. Прямые, перпендикулярные граням тетраэдра, и проходящие через центры их описанных окружностей, пересекаются в одной точке – центре описанной сферы.
Доказательство. Каждая такая прямая является геометрическим местом точек, равноудаленных от вершин соответствующей грани тетраэдра. Поэтому центр описанной сферы будет принадлежать всем этим прямым.
Заметим, что не у всякого тетраэдра прямые, проходящие через центры вписанных в грани окружностей и перпендикулярные этим граням, пересекаются в одной точке. Ответ на то, когда это происходит, дает следующая теорема.
Теорема 2»’. У тетраэдра существует сфера, касающаяся всех его ребер, тогда и только тогда, когда суммы противоположных ребер этого тетраэдра равны.
Доказательство. Пусть у тетраэдра ABCD существует сфера, касающаяся его ребер. Обозначим через a, b, c и d расстояния от соответствующих вершин тетраэдра до точек касания. Тогда AB = a + b, CD = c + d. Следовательно, AB + CD = a + b + c + d. Аналогично, AC + BD = a + b + c + d, AD + BC = a + b + c + d. Таким образом, суммы противоположных ребер тетраэдра равны.
Обратно. Предположим, что суммы противоположных ребер тетраэдра ABCD равны. Впишем в треугольник ABC окружность. Обозначим через X точку касания этой окружности стороны AB (рис. 2) .

Доказать что прямые параллельны в тетраэдре

Тогда AX = (AB + AC – BC):2. Так как AC – BC = AD – BD, то AX = (AB + AD – BD):2. Следовательно, точка X является точкой касания окружности, вписанной в треугольник ABD . Через центры этих двух окружностей проведем перпендикуляры. Они лежат в одной плоскости, проходящей через X и перпендикулярной AB. Точка O их пересечения будет равноудалена от сторон треугольников ABC и ABD. Таким образом, любые два перпендикуляра, проходящие через центры окружностей, вписанных в грани тетраэдра, пересекаются. Из этого следует, что или они лежат в одной плоскости, или пересекаются в одной точке. Поскольку они не лежат в одной плоскости, то значит, они пересекаются в одной точке O , равноудаленной от всех ребер тетраэдра, т.е. O – центр сферы, касающейся всех ребер данного тетраэдра.
Теорема 3. Медианы треугольника пересекаются в одной точке, называемой центроидом треугольника и делятся в этой точке в отношениии 2 : 1.
Теорема 3′. Отрезки, соединяющие вершины тетраэдра с точками пересечения медиан противоположных граней, пересекаются в одной точке – центроиде тетраэдра и делятся в этой точке в отношении 3 : 1, считая от вершины.
Доказательство. Пусть ABCD – тетраэдр, O – точка пересечения медиан треугольника ABC, P – точка пересечения медиан треугольника BCD, R – точка пересечения отрезков DO и AP (рис. 3) .

Доказать что прямые параллельны в тетраэдре

Рассмотрим треугольник AQD. Точки O и P делят соответствующие стороны в отношении 2 : 1. Покажем, что точка R делит DO и AP в отношении 3 : 1. В треугольнике APQ проведем OS параллельно AP. Она разделит отрезок PQ в отношении 2 : 1. Если отрезок SQ принять за единицу, то отрезок DP будет равен 6. Отрезки DR и RQ относятся также как DP и PS, т.е. DR : RQ = 6 : 2 = 3 : 1. Аналогичным образом доказывается, что точка R делит отрезок AP в отношении 3 : 1. Отрезки, соединяющие вершины B и C с точками пересечения медиан противоположных граней также будут делить отрезок DO в отношении 3 : 1 и, следовательно, будут проходить через точку O . Что и требовалось доказать.
Теорема 4. Отрезки, соединяющие середины противоположных ребер тетраэдр, пересекаются в одной точке – центроиде.
Доказательство. Достаточно заметить, что в предыдущем доказательстве медиана треугольника AQD, проведенная из вершины Q, проходит через центроид O .
Теорема 5. Для цетроида O треугольника ABC имеет место равенство .
Теорема 5′. Для цетроида O тетраэдра ABCD имеет место равенство .
Теорема 6. Пусть a произвольная прямая, проходящая через центроид треугольника ABC. Будем считать одну из полуплоскостей, на которые эта прямая разбивает плоскость, положительной, а другую отрицательной. Тогда сумма расстояний от вершин треугольника до прямой a, взятых со знаком + или – в зависимости от того, какой полуплоскости принадлежит вершина, равна нулю.
Теорема 6′. Пусть Доказать что прямые параллельны в тетраэдре произвольная плоскость, проходящая через центроид тетраэдра ABCD. Будем считать одно из полупространств, на которые эта плоскость разбивает пространство, положительным, а другое отрицательным. Тогда сумма расстояний от вершин тетраэдра до плоскости Доказать что прямые параллельны в тетраэдре , взятых со знаком + или – в зависимости от того, какому полупространству принадлежит вершина, равна нулю.
Теорема 7. Пусть a произвольная прямая. Будем считать одну из полуплоскостей, на которые эта прямая разбивает плоскость, положительной, а другую отрицательной. Тогда сумма расстояний от вершин треугольника до прямой a, взятых со знаком + или – в зависимости от того, какой полуплоскости принадлежит вершина, равна утроенному расстоянию от центроида треугольника до прямой a .
Теорема 7′. Пусть a произвольная плоскость. Будем считать одно из полупространств, на которые эта плоскость разбивает пространство, положительным, а другое отрицательным. Тогда сумма расстояний от вершин тетраэдра до плоскости a , взятых со знаком + или – в зависимости от того, какому полупространству принадлежит вершина, равна учетверенному расстоянию от центроида тетраэдра до данной плоскости.
Теорема 8′ (Менелая). Пусть на ребрах AB, BC, CD и AD тетраэдра ABCD взяты соответственно точки A 1 , B 1 , C 1 и D 1 . Для того чтобы эти точки лежали в одной плоскости, необходимо и достаточно, чтобы выполнялось равенство

Доказательство. Пусть точки A 1 , B 1 , C 1 и D 1 лежат в одной плоскости (рис. 4). Опустим из вершин тетраэдра перпендикуляры AA ’ , BB ’ , CC ’ , DD ’ на эту плоскость. Тогда AA 1 : A 1 B = AA ’ : BB ’ , BB 1 : B 1 C = BB ’ : CC ’ , CC 1 : C 1 D = CC ’ : DD ’ , DD 1 : D 1 A = DD ’ : AA ’ . Откуда и следует требуемое равенство.

Доказать что прямые параллельны в тетраэдре

Обратно, пусть выполняется указанное равенство. Через точки A 1 , B 1 , C 1 проведем плоскость. Она пересечет ребро AD в некоторой точке D ’ . Для точек A 1 , B 1 , C 1 и D ’ также выполняется указанное равенство. Из этого следует, что DD 1 : D 1 A = DD ’ : D ’ A и, значит, D 1 и D ’ совпадают, т.е. A 1 , B 1 , C 1 и D 1 лежат в одной плоскости.

Теорема 9′ (Чевы). Пусть на ребрах AB, BC, CD и AD тетраэдра ABCD взяты соответственно точки A 1 , B 1 , C 1 и D 1. Плоскости ABC 1 , BCD 1 , CDA 1 и DAB 1 пересекаются в одной точке тогда и только тогда, когда

Доказательство. По предыдущей теореме выполнимость указанного равенства равносильна тому, что точки A 1 , B 1 , C 1 и D 1 лежат в одной плоскости. При этом точка пересечения этих плоскостей является точкой пересечения диагоналей четырехугольника A 1 B 1 C 1 D 1 .

Рассмотрим теперь некоторые специальные тетраэдры.
Равногранным тетраэдром называется тетраэдр, у которого все грани равны.
Теорема 10. Для любого остроугольного треугольника существует равногранный тетраэдр, грани которого равны данному треугольнику.
Доказательство. Пусть ABC – произвольный остроугольный треугольник. Через его вершины проведем прямые, параллельные противоположным сторонам (рис. 5).

Доказать что прямые параллельны в тетраэдре

Они образуют треугольник A 1 B 1 C 1 , разбитый на четыре треугольника, равных исходному. Ясно, что A 1 B 1 C 1 представляет собой развертку равногранного тетраэдра.
Теорема 11. Тетраэдр является равногранным тогда и только тогда, когда у него центры вписанной и описанной сфер совпадают.
Доказательство. Пусть в тетраэдре ABCD центрами вписанной и описанной сфер является точка O . P и Q – и точки касания вписанной сферы граней ABC и BCD (рис.6) . Заметим, что P и Q являются центрами окружностей, описанных около треугольников ABC и BCD соответственно. Из этого, в частности, следует, что треугольник ABC – остроугольный. Кроме того, треугольники BP C и BQ C равны. Углы BAC и BDC равны половинам углов BP C и BQ C , и следовательно также равны. Таким образом, плоские углы при вершине D равны углам треугольника ABC. Значит, в сумме они составляют 180 0 . Аналогично, плоские углы при остальных вершинах тетраэдра в сумме составляют 180 0 . Поэтому развертка этого тетраэдра имеет вид, указанный в теореме 1. Следовательно, тетраэдр равногранный.

Доказать что прямые параллельны в тетраэдре

Покажем обратное, пусть ABCD – равногранный тетраэдр, O – цетр описанной сферы. Тогда плоскости граней пересекают описанную сферу по окружностям одинакового радиуса. Следовательно, расстояния от точки O до граней тетраэдра равны и, значит O – центр вписанной сферы.
Прямоугольным тетраэдром называется тетраэдр, у которого все плоские углы при какой-нибудь вершине прямые.
Теорема 12. Основанием высоты прямоугольного тетраэдра, проведенной из вершины с прямыми плоскими углами, является точка пересечения высот противоположной грани.
Теорема 13. (Пифагора) Квадрат площади грани прямоугольного тетраэдра, лежащей против вершины с прямыми плоскими углами, равен сумме квадратов площадей остальных граней этого тетраэдра.
Доказательство. Пусть ABCD – прямоугольный тетраэдр (рис. 7). Плоские углы при вершине D прямые. Можно было бы обозначить ребра, выходящие из вершины D через a, b, c, а затем воспользоваться формулой Герона для нахождения площади треугольника ABC .

Доказать что прямые параллельны в тетраэдре

Мы рассмотрим другой способ. Имеем S ADB = S ABC cos Доказать что прямые параллельны в тетраэдре ; S ACD = S ABC cos Доказать что прямые параллельны в тетраэдре ; S BCD = S ABC cos Доказать что прямые параллельны в тетраэдре , где Доказать что прямые параллельны в тетраэдре , Доказать что прямые параллельны в тетраэдре , Доказать что прямые параллельны в тетраэдре — соответствующие двугранные углы, равные углам C DO, BDO и A DO . Таким образом, cos Доказать что прямые параллельны в тетраэдре , cos Доказать что прямые параллельны в тетраэдре , cos Доказать что прямые параллельны в тетраэдре составляют координаты единичного вектора, поэтому cos 2 Доказать что прямые параллельны в тетраэдре + cos 2 Доказать что прямые параллельны в тетраэдре + cos 2 Доказать что прямые параллельны в тетраэдре = 1. Значит , S 2 ABC = S 2 ABD + S 2 BCD + S 2 ACD . Что и требовалось доказать.
Ортогональным называется тетраэдр, у которого противоположные ребра попарно перпендикулярны.
Ортоцентрическим называется тетраэдр, у которого высоты или их продолжения пересекаются в одной точке – ортоцентре третаэдра.
Теорема 14. Тетраэдр является ортогональным тогда и только тогда, когда отрезки, соединяющие середины противоположных ребер, равны.
Доказательство. Пусть ABCD – тетраэдр. A 1 , B 1, C 1, D 1 – середины двух пар противоположных ребер (рис. 8).

Доказать что прямые параллельны в тетраэдре

Тогда A 1 B 1 D 1 C 1 – параллелограмм. Его диагонали равны тогда и только тогда, когда он – прямоугольник, т.е. AC Доказать что прямые параллельны в тетраэдре BD .
Теорема 2. Тетраэдр является ортогональным тогда и только тогда, когда он является ортоцентрическим.
Доказательство. Пусть ABCD – ортогональный тетраэдр (рис. 9). DD 2 – высота, опущенная из вершины D. Плоскость CDD 2 перпендикулярна AB и, следовательно, DC 1 и CC 1 – высоты треугольников ABC и ABD. Высоты DD 2 и CC 2 треугольника C 1 CD пересекаются.

Доказать что прямые параллельны в тетраэдре

Таким образом, произвольные пары высот тетраэдра пересекаются в одной точке. Но попарно пересекающиеся прямые или лежат в одной плоскости, или пересекаются в одной точке. В нашем случае прямые не лежат в одной плоскости и, следовательно, пересекаются в одной точке O .
Обратно, пусть высоты тетраэдра ABCD пересекаются в одной точке O. Тогда DD 2 Доказать что прямые параллельны в тетраэдре ABC и, следовательно, DD 2 Доказать что прямые параллельны в тетраэдре ABC . Аналогично, CC 2 Доказать что прямые параллельны в тетраэдре ABD и, следовательно, CC 2 Доказать что прямые параллельны в тетраэдре AB . Таким образом, AB перпендикулярна плоскости COD и, следовательно, AB Доказать что прямые параллельны в тетраэдре CD. Аналогично показывается перпендикулярность остальных противоположных ребер.
Теорема 3. Тетраэдр является ортогональным тогда и только тогда, когда одна из его высот проходит через ортоцентр соответствующей грани.
Доказательство. Необходимость вытекает из Теоремы 2. Покажем достаточность. Пусть D 2 – ортоцентр грани ABC, DD 2 – высота тетраэдра ABCD. Тогда BC перпендикулярна плоскости AA 1 D и, следовательно, BC перпендикулярна AD. Аналогично показывается перпендикулярность остальных противоположных ребер.
Теорема 4. В ортогональном тетраэдре окружности 9-ти точек всех граней лежат на одной сфере (сфера 24 точек).
Доказательство. Рассмотрим сферу с центром в центроиде тетраэдра и диаметром, равным отрезкам, соединяющим середины противоположных ребер. Эта сфера проходит через середины всех ребер тетраэдра и, следовательно, содержит окружности 9 точек всех граней.

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938.
2. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949.
3. В.В.Прасолов, И.Ф.Шарыгин. Задачи по стереометрии. – М.: Наука, 1989.
4. Д.О.Шклярский, Н.Н.Ченцов, И.М.Яглом. Избранные задачи и теоремы элементарной математики. Часть 3. – М.: Государственное издательство технико-теоретической литературы, 1954.

🔍 Видео

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

10 класс, 5 урок, Параллельность трех прямыхСкачать

10 класс, 5 урок, Параллельность трех прямых

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Взаимное расположение прямых в пространстве. 10 класс.Скачать

Взаимное расположение прямых в пространстве. 10 класс.

10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

10 класс, 14 урок, Задачи на построение сеченийСкачать

10 класс, 14 урок, Задачи на построение сечений

№69. Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SBСкачать

№69. Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SB

№70. Докажите, что плоскость, проходящая через середины ребер АВ, АС и AD тетраэдра ABCD,Скачать

№70. Докажите, что плоскость, проходящая через середины ребер АВ, АС и AD тетраэдра ABCD,

6 часов стереометрии для 10-классника | Математика 10 класс | УмскулСкачать

6 часов стереометрии для 10-классника | Математика 10 класс | Умскул

Параллельность прямых. Практическая часть. 10 класс.Скачать

Параллельность прямых. Практическая часть.  10 класс.
Поделиться или сохранить к себе: