Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости

Скрещивающиеся прямые. Проведение через одну из скрещивающихся прямых плоскости, параллельной другой прямой
Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости

На этом уроке мы рассмотрим определение скрещивающихся прямых и докажем теорему – признак скрещивающихся прямых. Далее рассмотрим три случая взаимного расположения двух прямых в пространстве. Докажем теорему о том, что через каждую из скрещивающихся прямых можно провести плоскость, параллельную другой прямой.
В конце урока решим несколько задач в тетраэдре на скрещиваемость прямых.

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости (рис. 36)

2.14. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости (рис. 36).

Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскостиРешение: Пусть прямые а и b скрещиваются. Выберем на прямой а произвольно точку А и проведем прямую с, параллельную b (через точку, не лежащую на данной прямой можно провести единственную прямую, параллельную данной). Прямые а и с задают плоскость β. По признаку параллельности прямой и плоскости: b || β. Аналогично, проведем прямую d в плоскости α.

α || β (если две пересекающиеся прямые плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны).

3.06. Постройте сечение пятиугольной пирамиды PABCDE плоскостью α, которая проходит через внутреннюю точку М основания ABCDE параллельно грани РAB (рис. 37).

Решение: Так как прямые, по которым две параллельные плоскости пересечены третьей плоскостью, параллельны, а плоскость α параллельна грани РАВ, то: а) прямая пересечения плоскости α с плоскостью основания пирамиды должна быть параллельна АВ; б) прямая пересечения α с плоскостью грани РВС – Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскостипараллельна АР; в) прямая пересечения α с плоскостью РАD – параллельна РА, поэтому проводим: 1) через точку М прямую KF || AB; 2) FH || PA; 3) KR || PB; 4) ML || AP. Пятиугольник HLRKF – искомое сечение. В доказательстве используется признак параллельности прямой и плоскости, признак параллельности плоскостей.

3.07. Точки А, В и С лежат в плоскости α и не лежат на одной прямой. Равные и параллельные отрезки АА1, ВВ1 и СС1 расположены по одну сторону от плоскости α. Докажите, что (А1В1С1) || Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости(АВС) (рис. 38).

Решение: ВВ1С1С – параллелограмм (из параллельности и равенства ВВ1 и СС1), следовательно ВС || В1С1. АВ || А1В1 (аналогично). По теореме о параллельности плоскостей (по двум пересекающимся прямым): (А1В1С1) || (АВС).

3.08. Точка В не лежит в плоскости ΔAEC, точки М, К и Р – середины отрезков соответственно АВ, ВС и ВЕ (рис.39). а) Докажите, что плоскости МКР и АЕС параллельны. б) Найдите площадь ΔМКР, если площадь ΔAEC равна 48 см 2 .

Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскостиРешение: а)Заметим, что ΔAEC и не лежащая в нем точка В образуют тетраэдр ВАСЕ. МК || АС (МК – средняя линия ΔAВC). КР || СЕ (КР – средняя линия ΔВCЕ). По теореме о параллельности плоскостей (через пересекающиеся прямые): (МКР)||(АСЕ).

б) По формуле Герона:

Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости

Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости, как средние линии соответствующих треугольников. Подставим данные значения в формулу: Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости. Отсюда Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости.

3.09. Три отрезка А1А2, В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны (рис. 40).

Решение: Каждые две пересекающиеся прямые задают плоскость (через любые две пересекающиеся прямые можно провести плоскость, и притом только одну). Так как точка пересечения делит прямые пополам, то по теореме Фалеса: А1В1 || В2А2. Аналогично доказывается параллельность С1В1 и С2В2, А1В1 и А2В2. По теореме о параллельности плоскостей (через пересекающиеся прямые): (А1В1С1)||(А2В2С2).

Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскостиДаны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости

3.10. Прямая DF пересекает параллельные плоскости α, β и γ соответственно в точках D, Е и F, при этом DF = 3, ЕF = 9 (рис. 41). Прямая EG пересекает плоскости α и γ соответственно в точках G и Н, при этом EG = 12. Найдите длину GН.

Решение: Прямые EF и ЕH задают плоскость EFH, которая пересекает плоскости α и γ по прямым GD и FH соответственно. ∆GED

∆HEF (так как GD || FH, Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости). По свойству преобразования подобия: Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости. Тогда Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости.

3.11. Плоскости α и β пересекаются по прямой с (рис. 42). Через точки А и В, расположенные вне этих плоскостей, проводятся параллельно плоскости β и параллельные между собой прямые АС и BD (Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости), а также – параллельно плоскости α и параллельные между собой прямые АЕ и BF (Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости). Докажите: а) плоскости АСЕ и BDF параллельны; б) плоскости АСЕ и BDF пересекают плоскости α и β по параллельным прямым.

Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскостиДаны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости

Решение: а) GА || DB, АЕ || FВ по условию. По теореме о параллельности плоскостей (через пересекающиеся прямые): (АСЕ) || (DBF).

б) BF и АЕ задают плоскость, параллельную плоскости α. По свойству параллельных плоскостей: EF || с. Аналогично CD || c. По признаку параллельности прямых: CD || EF.

5.3. Уроки проверки знаний, умений и навыков

Для проверки знаний, умений и навыков разработаны три задачи на выявление типов оперирования пространственными образами: изменение пространственного положения образа (I тип); преобразование структуры образа (II тип); изменение положения и структуры образа одновременно (III тип).

1. Через вершины параллелограмма ABCD, лежащего в одной из двух параллельных плоскостей, проведены параллельные прямые, пересекающие вторую плоскость в точках А1, В1, С1 и D1. Докажите, что четырехугольник А1В1С1D1 тоже параллелограмм (рис. 43).

Даны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскостиДаны 2 скрещивающиеся прямые как провести через них 2 параллельные плоскости

Решение: АА1 = DD1 = СС1 = ВВ1 (отрезки параллельных прямых, заключенные между параллельными плоскостями, равны). Попарно параллельные прямые задают параллелограммы (задание плоскости через параллельные прямые), следовательно D1А1 || DА || СВ || С1В1. По определению А1В1С1D1 параллелограмм.

Видео:10 класс, 7 урок, Скрещивающиеся прямыеСкачать

10 класс, 7 урок, Скрещивающиеся прямые

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Видео:№94. Даны две скрещивающиеся прямые и точка В, не лежащая на этих прямых. Пересекаются ли плоскостиСкачать

№94. Даны две скрещивающиеся прямые и точка В, не лежащая на этих прямых. Пересекаются ли плоскости

Понятие скрещивающихся прямых

В пространстве можно построить две прямые так, что они не будут пересекаться, но и параллельными они также являться не будут. Для этого достаточно, чтобы прямые НЕ находились в одной плоскости. В этом случае их именуют скрещивающимися прямыми.

Здесь ребра ВС и АЕ как раз лежат на двух скрещивающихся прямых. Поэтому их можно так и называют – скрещивающиеся отрезки. По аналогии можно ввести понятие и скрещивающихся лучей.

Существует теорема, представляющая собой признак скрещивающихся прямых.

Действительно, пусть есть две прямые, НК и РМ. Обозначим как α плос-ть, проходящую через НК и точку М. Если РМ пересекает α, то это означает, что М – единственная общая точка у α и РМ. Получается, что Н, К, М и Р – это точки в различных плос-тях, и через них нельзя провести одну плос-ть. Значит, и прямые НК и РМ – скрещивающиеся.

Таким образом, в стереометрии возможно всего три случая взаимного расположения двух прямых в пространстве:

1) прямые пересекаются, и тогда они обязательно находятся в одной плос-ти;

2) прямые располагаются в одной плос-ти, но не пересекаются – случай параллельных прямых;

3) прямые находятся в разных плос-тях – случай скрещивающихся прямых.

Докажем одну теорему:

Для доказательства возьмем произвольные скрещивающиеся прямые m и n. Отметим на n точку К и проведем через К прямую р, параллельную m:

Через пересекающиеся прямые nи p можно провести единственную плос-тьα. По признаку параллельности прямой и плос-ти можно заключить, что m||α.

Покажем, что кроме α нет других плос-тей, проходящих через n и параллельных m. Действительно, если бы такая плос-ть β существовала, то р имела бы с ней общую точку К, но полностью в β она бы не могла находиться, иначе α и β совпадали бы. Значит, р пересекала бы β. Но тогда ее обязательно пересекала бы и m по одну из свойств параллельных прямых. В этом случае m и β не были бы параллельными.

Видео:Стереометрия для ЕГЭ: 2 - параллельные и скрещивающиеся прямыеСкачать

Стереометрия для ЕГЭ: 2 - параллельные и скрещивающиеся прямые

Сонаправленные лучи

В планиметрии существует понятие сонаправленных лучей. Пусть на плос-ти есть два луча О1А и О2В. Проведем прямую О1О2. Она, как и всякая прямая, разделит плос-ть на две полуплоскости. Для того, чтобы лучи О1А и О2В считались сонаправленными, необходимо выполнение двух условий:

1) они должны оказаться в одной полуплоскости;

2) они должны быть параллельными.

Здесь мы рассмотрели случай, когда лучи О1А и О2В находятся на разных прямых. Возможен частный случай, когда они располагаются на одной прямой. В таком случае для сонаправленности лучей достаточно, чтобы один из них полностью лежал на другом:

Рассмотрим теорему, касающуюся сонаправленных лучей, причем она верна не только в планиметрии, но и в стереометрии.

В доказательстве сразу рассмотрим случай углов, располагающихся в разных плос-тях. Пусть есть углы О1 и О2, стороны которых образуют попарно сонаправленные лучи. На одной паре лучей отметим точки А1 и А2 так, чтобы отрезки О1А1 и О2А2 были одинаковыми. На другой паре лучей аналогично отложим точки В1 и В2 так, чтобы одинаковыми были отрезки О1В1 и О2В2:

Заметим, что лучи О1А1 и О2А2 как сонаправленные должны располагаться в одной плос-ти, иначе они не будут параллельными. Тогда О1А1А2О2 – плоский четырехугольник. Отрезки О1А1 и О2А2 параллельны и одинаковы. Это значит, что О1А1А2О2 – параллелограмм. Аналогично легко убедиться, что параллелограммом является и четырехугольник О1В1В2О2. Это значит, что

Отсюда вытекает (по свойству транзитивности), что отрезки А1А2 и В1В2 также одинаковы и параллельны, а потому А1А2В2В1 – также параллелограмм. Значит, стороны А1В1 и А2В2 одинаковы. Получается, что у ∆О1А1В1 и ∆О2А2В2 одинаковы все стороны, поэтому ∆О1А1В1 и ∆О2А2В2 равны. Отсюда вытекает и равенство углов ∠А1О1В1 и ∠А2О2В2, ч. т. д.

Видео:Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.

Угол между прямыми

Напомним, какая величина считается углом между пересекающимися прямыми. При пересечении прямых образуется 4 угла. Зная один из них, легко вычислить и остальные углы. Понятно, что хотя бы один из углов будет не превышать 90°. Именно такой угол и принимается за угол между прямыми:

Теперь покажем, как определить угол между скрещивающимися прямыми. Пусть прямые m и n скрещиваются. Выберем в пространстве произвольную точку К. Через нее можно построить такие прямые m1 и n1, что m1||m и n1||n. Угол между m1 и n1 как раз и принимается за угол между скрещивающимися прямыми m и n:

Возникает вопрос – зависит ли величина измеренного таким образом угла от того, какая именно точка К выбрана? Оказывается, что не зависит, и это можно доказать. Выберем две произвольные точки К1 и К2. Через К1 проведем прямые n1 и m1, а через К2 проведем n2 и m2, которые будут соответственно параллельны исходным прямым m и n.

Так как n1||n и n2||n, то по свойству транзитивности параллельности и n1||n2. Аналогично и m1||m2. Получается, что стороны углов в точках К1 и К2 соответственно сонаправлены. Значит, они одинаковы, ч. т. д.

Видео:10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

Задачи на скрещивающиеся прямые

Теоретический материал закончился, осталось научиться применять полученные знания. Перед просмотром решения постарайтесь самостоятельно решить каждую задачу.

Задание. Точка D находится вне плос-ти ∆АВС. Середины отрезков АD, BD и СD обозначены буквами M, N и P соответственно. Точка K располагается на отрезке BN (и не совпадает с концами этого отрезка). Определите, как относительно друг друга располагаются прямые:

Решение. Сначала важно построить правильный рисунок по описанию задачи:

Теперь можно рассмотреть по отдельности каждый пункт.

а) АВ и DN. Прямая DN совпадает с прямой BD. Она в свою очередь пересекается с АВ в точке В. Значит, в данном случае прямые пересекаются.

б) РК и ВС. Рассмотрим плос-ть треугольника ∆ВСD. Рассматриваемые прямые как раз находятся в ней. То есть они уже точно не скрещиваются. Могут ли они быть параллельны? Обратите внимание на отрезок NP. Это средняя линия в ∆ВСD, поэтому NP||ВС. Через Р может быть проведена лишь одна прямая, параллельная ВС (по аксиоме параллельности), и это NP. Значит, KP пересекает ВС.

в) MN и АВ. В ∆АВDMN является средней линией, поэтому MN||АВ.

г) МР и АС. МР – это средняя линия в ∆АСD, значит, МР||АС.

д) KN и АС. Прямая KN совпадает с прямой BD. Она пересекает плос-ть АСВ, но точка пересечения (это В) не находится на АС. Тогда по признаку скрещивающихся прямых можно утверждать, что KN и АС скрещиваются.

е) MD и ВС. MD пересекается с плос-тью АСВ в точке А. Тогда из признака скрещивающихся прямых вытекает, что MD и DC скрещиваются.

Задание. Через точку Р, не находящуюся на прямой m, проведены две различные прямые, не пересекающиеся с m. Верно ли, что хотя бы одна из них точно скрещивается с m?

Решение. Каждая из этих двух прямых с m не пересекается. Тогда они либо параллельны m, либо скрещиваются с ней. Но обе прямые параллельны m не могут быть параллельны m, ведь тогда через Р будет проведено сразу две прямые, параллельные m, что невозможно. Значит, хотя бы одна из прямых действительно скрещивается с m.

Задание. MК и РН – скрещивающиеся прямые.Скрещиваются ли прямые МН и КР?

Решение. Ясно, что точки М, К, Р, Н располагаются в различных плос-тях. В противном случае, если бы существовала плос-ть α, в которой находились бы М, К, Р и Н, то в α также находились бы прямые МК и РН, и тогда они уже по определению не были бы скрещивающимися.

Теперь рассмотрим плос-ть КРН. В ней находится прямая КР. А прямая МН ее пересекает в точке К. Тогда, по признаку скрещивающихся прямых, МН и КР скрещиваются.

Задание. Прямые m и n скрещиваются. M – точка на m, N – точка на n. Через m и N проведена плос-ть α, а через n и M – плос-ть β. Пересекаются ли плос-ти α и β, и если да, то по какой линии?

Посмотрим, есть ли у α и β общие точки. Плос-ть α проходит через n, то есть и через точку N тоже. Плос-ть β также проходит через N. Значит, N – общая точка. Аналогично можно показать, что и М – это общая точка. В итоге α и β пересекаются, причем на линии пересечения находятся точки M и N. Значит, именно прямая МN является границей этих двух плос-тей.

Задание. Известно, что MНКЕ – параллелограмм, а МНРТ – трапеция (РТ – её основание), причем они располагаются в разных областях. Каково расположение отрезков КЕ и РТ друг относительно друга.

Решение. Задачу можно решить и без рисунка. Если РТ – основание трапеции, то второе основание – это МН, и МН||РТ. В параллелограмме МНКЕ параллельны стороны МН и КЕ, ведь они противоположные. Тогда по свойству транзитивности параллельности из того факта, что МН||РТ и МН||КЕ, вытекает, что и РТ||КЕ.

Задание. Известно, что ОА и СD – скрещивающиеся прямые, а ОВ||CD. Чему равен угол между ОА и CD, если

Если CD||ОВ, то угол между CD и ОА совпадает с углом между ОВ и ОА. В задании а) он совпадет с ∠АОВ и составляет 40°. В случае б) угол не может составлять 135°, так как он не должен превышать 90°. Поэтому он равен

Наконец, в случае в) он составит 90°.

Ответ: а) 40°; б) 45°; в) 90°.

Задание. Дан куб, вершины которого обозначены так, как это показано на рисунке:

Найдите угол между прямыми:

Решение. Во всех трех случаях нам даны скрещивающиеся прямые. Для вычисления угла надо найти такие параллельные им прямые, которые будут пересекаться.

а) AD и GH. Заметим, что GH||СD, ведь это противоположные стороны квадрата СDHG, поэтому мы можем определить угол между AD и CD. Другими словами, мы просто заменяем в задаче GH на CD, так как эти отрезки параллельны. Так как отрезки AD и CD в свою очередь являются уже смежными сторонами в квадрате АВСD, то ∠ADC, который нам надо найти, составляет 90°.

б) BD и FG. Здесь уже уместно заменить FG на ВС. Это можно сделать, ведь FG||ВС (это стороны квадрата). Тогда нам необходимо вычислить ∠СВD. Он составляет 45°, ведь диагональ квадрата делит его угол пополам.

в) BD и AF. Здесь есть смысл AF заменить на GD. Но для этого надо сначала показать, что AF||DG.Рассмотрим отрезки AD и FG. Каждый из них параллелен ВС (по свойству квадратов ABCD и ВСGH). Значит, по свойству транзитивности AD||FG, то есть эти отрезки располагаются в одной плос-ти. Тогда AFGD – плоский четырехугольник.

Заметим, что отрезки AD и FG ещё и одинаковы, так каждый из них равен ВС (вообще в кубе все ребра одинаковы). Получается, что в четырехугольнике AFGD стороны AD и FG одинаковы и параллельны, а потому AFGD – параллелограмм, по одному из его признаков. Отсюда и вытекает, что AF||DG.

Мы поняли, искомый нами угол между прямыми равен∠BDG. Как его вычислить? Для этого надо рассмотреть ∆BDG. Можно заметить, что он равносторонний. Действительно, отрезки BG, GD и BD – это диагонали в равных квадратах ВСGH, СDHG, АВСD, поэтому и сами эти диагонали также одинаковы. В любом равностороннем треугольнике все углы составляют по 60°, поэтому и ∠BDG равен этому же значению, то есть 60°.

Ответ: а) 90°; б) 45°; в) 60°.

Задание (стереометрическая задача из ЕГЭ). Точки А, В, С и D в пространстве располагаются так, что расстояния между любыми двумя из этих точек одинаковы. Можно доказать (попробуйте сделать это самостоятельно), что такая ситуация возможна лишь в случае, когда точки не располагаются в одной плос-ти. М – середина ВС, а L – середина АВ. Найдите косинус угла между прямыми МD и CL.

Решение. Из условия вытекает, что ∆АВС, ∆ВСD, ∆ABD – равносторонние и притом равные друг другу. Проведем в ∆АВС отрезок такой отрезок MF, что MF||СL. Тогда нам необходимо вычислить ∠DMF (точнее, его косинус). Это можно сделать, используя теорему косинусов применительно к ∆MDF, но для этого сперва надо найти все стороны в этом треугольнике:

Для удобства обозначим длину отрезков АВ, ВС, АС, BD, AD и CD буквой R. Так как L– середина АВ, то CL– медиана в ∆АВС. Но в равностороннем треугольнике она одновременно будет и высотой. Тогда ∆АСL – прямоугольный. Запишем для него теорему Пифагора:

Аналогичным образом легко определить, что длина медианы DМ в ∆ВСD равна этому же значению:

Теперь исследуем ∆ВСL. Так как MF||CL и М – середина ВС, то MF оказывается средней линией в ∆ВСL. Значит, ее длина вдвое меньше, чем у СL:

Также из того факта, что МF – средняя линия, вытекает то, что F – середина LВ. Тогда можно вычислить FB:

Далее обратим внимание на ∆ВFD. ∠В в нем составляет 60°, ведь это одновременно и угол в равностороннем ∆АВD. Стороны FB и BD нам известны, а потому с помощью теоремы косинусов можно вычислить и FD:

Теперь можно составить и для ∆МDF уравнение на основе теореме косинуса, из которого удастся выяснить интересующий нас косинус ∠DMF:

В ходе сегодняшнего урока мы познакомились с новым понятием – скрещивающимися прямыми. Также мы узнали, как вычислять угол между ними. Подобные задачи могут встречаться и на ЕГЭ.

🌟 Видео

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Взаимное расположение прямых в пространстве. 10 класс.Скачать

Взаимное расположение прямых в пространстве. 10 класс.

Стереометрия 10 класс. Часть 2 | Математика | TutorOnlineСкачать

Стереометрия 10 класс. Часть 2 | Математика | TutorOnline

Угол между прямыми в пространстве. 10 класс.Скачать

Угол между прямыми в пространстве. 10 класс.

№51. Докажите, что плоскости α и β параллельны, если две пересекающиеся прямые mСкачать

№51. Докажите, что плоскости α и β параллельны, если две пересекающиеся прямые m

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

10 класс, 4 урок, Параллельные прямые в пространствеСкачать

10 класс, 4 урок, Параллельные прямые в пространстве

10 класс - Геометрия - Скрещивающиеся прямыеСкачать

10 класс - Геометрия - Скрещивающиеся прямые

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать

Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)

ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрияСкачать

ПАРАЛЛЕЛЬНЫЕ ПЛОСКОСТИ 10 класс стереометрия

7. Скрещивающиеся прямыеСкачать

7. Скрещивающиеся прямые

№41. Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямойСкачать

№41. Может ли каждая из двух скрещивающихся прямых быть параллельна третьей прямой

10 класс, 11 урок, Свойства параллельных плоскостейСкачать

10 класс, 11 урок, Свойства параллельных плоскостей
Поделиться или сохранить к себе: