Что значит вписан в окружность

Что значит вписан в окружность

Ключевые слова: окружность, описанная окружность, центр окружности, вписанная окружность, треугольник, четырехугольник, вневписанная окружность

Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон.

Центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Окружность называется вписанной в выпуклый многоугольник, если она лежит внутри данного многоугольника и касается всех прямых, проходящих через его стороны.

Если в данный выпуклый многоугольник можно вписать окружность, то биссектрисы всех углов данного многоугольника пересекаются в одной точке, которая является центром вписанной окружности.
Сам многоугольник в таком случае называется описанным около данной окружности.
Таким образом, в выпуклый многоугольник можно вписать не более одной окружности.

Для произвольного многоугольника невозможно вписать в него и описать около него окружность.
Для треуголь ника это всегда возможно.

Окружность называется вписанной в треугольник, если она касается всех трех его сторон, а её центр находится внутри окружности

  • Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
  • В любой треугольник можно вписать окружность, и только одну.
  • Радиус вписанной в треугольник окружности равен отношению площади треугольника и его полупериметра: $$r = frac

    $$ , где S — площадь треугольника, а $$p =frac$$ — полупериметр треугольника.

Серединным перпендикуляром называют прямую перпендикулярную отрезку и проходящую через его середину.

Окружность называется описанной около треугольника, если она проходит через три его вершины.

Окружность, вписанная в прямоугольный треугольник

Окружность, описанная около прямоугольного треугольника

Четырехугольник, вписанный в окружность

Окружность, вписанная в ромб

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Вписанная окружность

Что значит вписан в окружность

Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.

Окружность, точно можно вписать в такие геометрические фигуры, как:

  • Треугольник
  • Выпуклый, правильный многоугольник
  • Квадрат
  • Равнобедренная трапеция
  • Ромб

В четырехугольник, можно вписать окружность,
только при условии, что суммы длин
противоположных сторон равны.

Во все вышеперечисленные фигуры
окружность, может быть вписана, только один раз.

Окружность невозможно вписать в прямоугольник
и параллелограмм, так как окружность не будет
соприкасаться со всеми сторонам этих фигур.

Геометрические фигуры, в которые вписана окружность,
называются описанными около окружности.

Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.

Описанный четырехугольник — это четырехугольник, который описан
около окружности и все четыре его стороны соприкасаются с окружностью.

Свойства вписанной окружности

В треугольник

  1. В любой треугольник может быть вписана окружность, причем только один раз.
  2. Центр вписанной окружности — точка пересечения биссектрис треугольника.
  3. Вписанная окружность касается всех сторон треугольника.
  4. Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:

[ S = frac(a+b+c) cdot r = pr ]

p — полупериметр четырехугольника.
r — радиус вписанной окружности четырехугольника.

  • Центр окружности вписанной в треугольник равноудален от всех сторон.
  • Точка касания — это точка, в которой соприкасается
    окружность и любая из сторон треугольника.
  • От центра вписанной окружности можно провести
    перпендикуляры к любой точке касания.
  • Вписанная в треугольник окружность делит стороны
    треугольника на 3 пары равных отрезков.
  • Вписанная и описанная около треугольника окружность тесно взаимосвязаны.
    Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:

    с — расстояние между центрами вписанной и описанной окружностей треугольника.
    R — радиус описанной около треугольника.
    r — радиус вписанной окружности треугольника.

    В четырехугольник

    1. Не во всякий четырехугольник можно вписать окружность.
    2. Если у четырехугольника суммы длин его противолежащих
      сторон равны, то окружность, может быть, вписана (Теорема Пито).
    3. Центр вписанной окружности и середины двух
      диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
    4. Точка пересечения биссектрис — это центр вписанной окружности.
    5. Точка касания — это точка, в которой соприкасается
      окружность и любая из сторон четырехугольника.
    6. Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:

    [ S = frac(a+b+c+d)cdot r = pr ]

    p — полупериметр четырехугольника.
    r — радиус вписанной окружности четырехугольника.

  • Точка касания вписанной окружности, которая лежит на любой из сторон,
    равноудалены от этой конца и начала этой стороны, то есть от его вершин.
  • Примеры вписанной окружности

    • Треугольник
      Что значит вписан в окружность
    • Четырехугольник
      Что значит вписан в окружность
    • Многоугольник
      Что значит вписан в окружность

    Примеры описанного четырехугольника:
    равнобедренная трапеция, ромб, квадрат.

    Примеры описанного треугольника:
    равносторонний
    , равнобедренный,
    прямоугольный треугольники.

    Верные и неверные утверждения

    1. Радиус вписанной окружности в треугольник и радиус вписанной
      в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
    2. Любой параллелограмм можно вписать в окружность. Неверное утверждение.
    3. В любой четырехугольник можно вписать окружность. Неверное утверждение.
    4. В любой ромб можно вписать окружность. Верное утверждение.
    5. Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
    6. Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
    7. Угол вписанный в окружность равен соответствующему центральному
      углу опирающемуся на ту же дугу. Неверное утверждение.
    8. Радиус вписанной окружности в прямоугольный треугольник равен
      половине разности суммы катетов и гипотенузы. Верное утверждение.
    9. Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
    10. Вписанная окружность в треугольник имеет в общем
      три общие точки со всеми сторонами треугольника. Верное утверждение.

    Окружность вписанная в угол

    Окружность вписанная в угол — это окружность, которая
    лежит внутри этого угла и касается его сторон.

    Центр окружности, которая вписана в угол,
    расположен на биссектрисе этого угла.

    К центру окружности вписанной в угол, можно провести,
    в общей сложности два перпендикуляра со смежных сторон.

    Длина диаметра, радиуса, хорды, дуги вписанной окружности
    измеряется в км, м, см, мм и других единицах измерения.

    Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Центральные и вписанные углы

    Что значит вписан в окружность

    О чем эта статья:

    Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать

    Вписанные и описанные окружности. Вебинар | Математика

    Центральный угол и вписанный угол

    Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

    Определение центрального угла:

    Центральный угол — это угол, вершина которого лежит в центре окружности.
    Центральный угол равен градусной мере дуги, на которую он опирается.

    Что значит вписан в окружность

    На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

    Определение вписанного угла:

    Вписанный угол — это угол, вершина которого лежит на окружности.

    Вписанный угол равен половине дуги, на которую опирается.

    Что значит вписан в окружность

    На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

    Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

    Четырехугольники, вписанные в окружность. 9 класс.

    Свойства центральных и вписанных углов

    Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

    • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

    Что значит вписан в окружность

    Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

    • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:

    Что значит вписан в окружность

    • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

    Что значит вписан в окружность

    ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

    • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

    Что значит вписан в окружность

    ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

    Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

    Что значит вписан в окружность

    На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

    Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

    Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

    Хорда — отрезок, соединяющий две точки на окружности.

    Что значит вписан в окружность

    • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

    Что значит вписан в окружность

    AB * AC = AE * AD
    Получается, что стороны вписанного в окружность угла — это хорды.

    • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

    Что значит вписан в окружность

    ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

    • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

    Что значит вписан в окружность

    ㄥBAC + ㄥBDC = 180°

    Видео:Треугольник, вписанный в окружность геометрия 7 классСкачать

    Треугольник, вписанный в окружность геометрия 7 класс

    Примеры решения задач

    Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

    Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

    Что значит вписан в окружность

    Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
    По теореме: вписанный угол равен дуге ½.
    ㄥACB = ½ AB = 40°

    Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

    Что значит вписан в окружность

    Мы уже потренировались и знаем, как найти вписанный угол.
    На рисунке в окружности центральный угол и дуга AC = 140°
    Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

    Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

    Что значит вписан в окружность

    СB = ⅕ от 360° = 72°
    Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

    🎦 Видео

    Вписанный в окружность четырёхугольник.Скачать

    Вписанный в окружность четырёхугольник.

    Окружность вписанная в треугольник и описанная около треугольника.Скачать

    Окружность вписанная в треугольник и описанная около треугольника.

    Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

    Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

    Треугольник ABC вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

    Треугольник ABC вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

    8 класс, 38 урок, Вписанная окружностьСкачать

    8 класс, 38 урок, Вписанная окружность

    3 правила для вписанного четырехугольника #shortsСкачать

    3 правила для вписанного четырехугольника #shorts

    Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

    Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

    Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

    Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

    Треугольник ABC вписан в окружность с центром O Угол BAC равен 32°Скачать

    Треугольник ABC вписан в окружность с центром O  Угол BAC равен 32°

    Вписанный в окружность прямоугольный треугольник.Скачать

    Вписанный в окружность прямоугольный треугольник.

    Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

    Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

    Углы, вписанные в окружность. 9 класс.Скачать

    Углы, вписанные в окружность. 9 класс.

    Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

    Четырёхугольник ABCD вписан в окружность ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

    Равносторонний треугольник вписан в окружность. Найти площадь меньшего сегмента.Скачать

    Равносторонний треугольник вписан в окружность. Найти площадь меньшего сегмента.

    Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline
    Поделиться или сохранить к себе: