Через две точки касания окружностей со сторонами угла

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
Через две точки касания окружностей со сторонами углаСуществование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Через две точки касания окружностей со сторонами углаФормулы для радиуса окружности, вписанной в треугольник
Через две точки касания окружностей со сторонами углаВывод формул для радиуса окружности, вписанной в треугольник

Видео:Окружности касаются внешним образом #егэ2023 #математика #егэ #школа #shorts #fypСкачать

Окружности касаются внешним образом #егэ2023 #математика #егэ #школа #shorts #fyp

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Через две точки касания окружностей со сторонами угла

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Через две точки касания окружностей со сторонами угла

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

Через две точки касания окружностей со сторонами угла

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Через две точки касания окружностей со сторонами угла

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Через две точки касания окружностей со сторонами угла

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Через две точки касания окружностей со сторонами угла

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.

Через две точки касания окружностей со сторонами угла

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

Через две точки касания окружностей со сторонами угла.

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Через две точки касания окружностей со сторонами угла

ФигураРисунокФормулаОбозначения
Произвольный треугольникЧерез две точки касания окружностей со сторонами угла
Равнобедренный треугольникЧерез две точки касания окружностей со сторонами угла
Равносторонний треугольникЧерез две точки касания окружностей со сторонами угла
Прямоугольный треугольникЧерез две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
Через две точки касания окружностей со сторонами угла.

Через две точки касания окружностей со сторонами угла

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
Через две точки касания окружностей со сторонами угла.

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Через две точки касания окружностей со сторонами угла

Произвольный треугольник
Через две точки касания окружностей со сторонами угла
Равнобедренный треугольник
Через две точки касания окружностей со сторонами угла
Равносторонний треугольник
Через две точки касания окружностей со сторонами угла
Прямоугольный треугольник
Через две точки касания окружностей со сторонами угла
Произвольный треугольник
Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
Через две точки касания окружностей со сторонами угла.

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
Через две точки касания окружностей со сторонами угла.

Равнобедренный треугольникЧерез две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Равносторонний треугольникЧерез две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольникЧерез две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

Через две точки касания окружностей со сторонами угла

где a, b, c – стороны треугольника, r – радиус вписанной окружности, Через две точки касания окружностей со сторонами угла– полупериметр (рис. 6).

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

с помощью формулы Герона получаем:

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

Через две точки касания окружностей со сторонами угла

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

то, в случае равнобедренного треугольника, когда

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

Через две точки касания окружностей со сторонами угла

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

то, в случае равностороннего треугольника, когда

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Доказательство . Рассмотрим рисунок 9.

Через две точки касания окружностей со сторонами угла

Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,

В силу теоремы 3 справедливы равенства

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Следовательно, принимая также во внимание теорему Пифагора, получаем

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Касательная к окружности

Через две точки касания окружностей со сторонами угла

О чем эта статья:

Видео:Задание 26 Две окружности, внешнее касаниеСкачать

Задание 26 Две окружности, внешнее касание

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Через две точки касания окружностей со сторонами угла

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Через две точки касания окружностей со сторонами угла

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:№675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке АСкачать

№675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке А

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Через две точки касания окружностей со сторонами угла

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Через две точки касания окружностей со сторонами угла

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Через две точки касания окружностей со сторонами угла

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Через две точки касания окружностей со сторонами угла

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Через две точки касания окружностей со сторонами угла

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Через две точки касания окружностей со сторонами угла

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Через две точки касания окружностей со сторонами угла

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Через две точки касания окружностей со сторонами угла

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Через две точки касания окружностей со сторонами угла

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Через две точки касания окружностей со сторонами угла

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:ЕГЭ задание 16 Внутреннее касание двух окружностейСкачать

ЕГЭ задание 16 Внутреннее касание двух окружностей

Об отрезках касательной к окружности

Разделы: Математика

Чаще всего именно геометрические задачи вызывают затруднения у абитуриентов, выпускников, участников математических олимпиад. Если посмотреть статистику ЕГЭ 2010 года, то видно, что к геометрической задаче С4 приступило около 12% участников, а получило полный балл только 0,2% участников, а в целом задача оказалась самой сложной из всех предложенных.

Очевидно, что чем раньше мы предложим школьникам красивые или неожиданные по способу решения задачи, тем больше вероятность заинтересовать и увлечь всерьёз и надолго. Но, как же трудно найти интересные и сложные задачи на уровне 7 класса, когда только начинается систематическое изучение геометрии. Что можно предложить интересующемуся математикой школьнику, знающему только признаки равенства треугольников, свойства смежных и вертикальных углов? Однако, можно ввести понятие касательной к окружности, как прямой, имеющей с окружностью одну общую точку; принять, что радиус, проведённый в точку касания, перпендикулярен касательной. Конечно, стоит рассмотреть все возможные случаи расположения двух окружностей и общих касательных к ним, которых можно провести от нуля до четырёх. Доказав ниже предложенные теоремы, можно значительно расширить набор задач для семиклассников. При этом попутно доказать важные или просто интересные и занимательные факты. Причём, поскольку многие утверждения не входят в школьный учебник, то обсуждать их можно и на занятиях кружка и с выпускниками при повторении планиметрии. Актуальными эти факты оказались в прошлом учебном году. Так как многие диагностические работы и сама работа ЕГЭ содержали задачу, для решения которой необходимо было использовать доказываемое ниже свойство отрезка касательной.

Через две точки касания окружностей со сторонами угла
Т1 Отрезки касательных к окружности, проведённые из
одной точки равны (рис. 1)

Вот именно с теоремой можно сначала познакомить семиклассников.
В процессе доказательства использовали признак равенства прямоугольных треугольников, сделали вывод о том, что центр окружности лежит на биссектрисе угла ВСА.
Попутно вспомнили, что биссектриса угла есть геометрическое место точек внутренней области угла, равноудалённых от его сторон. На этих доступных даже только начинающим изучать геометрию фактах основывается решение уже далеко нетривиальной задачи.

Через две точки касания окружностей со сторонами угла

1. Биссектрисы углов А, В и С выпуклого четырёхугольника АВСD пересекаются в одной точке. Лучи АВ и DC пересекаются в точке Е, а лучи
ВС и АD в точке F. Докажите, что у невыпуклого четырёхугольника AECF суммы длин противоположных сторон равны.

Решение (рис. 2). Пусть О – точка пересечения данных биссектрис. Тогда О равноудалена от всех сторон четырёхугольника АВСD, то есть
является центром окружности вписанной в четырёхугольник. По теореме 1 верны равенства: AR = AK, ER = EP, FT = FK. Почленно сложим левые и правые части, получим верное равенство:

Рассмотрим необычную по формулировке задачу, для решения которой достаточно знание теоремы 1.

2. Существует ли n-угольник, стороны которого последовательно 1, 2, 3, …, n, в который можно вписать окружность?

Решение. Допустим, такой n-угольник существует. А1А2 =1, …, Аn-1Аn = n – 1, АnА1 = n. B1, …, Bn – соответствующие точки касания. Тогда по теореме 1 A1B1 = A1Bn Можно обобщить этот факт – суммы сторон описанного чётноугольника, взятых через одну, равны. Например, для шестиугольника ABCDEF верно: AB + CD + EF = BC + DE + FА.

Через две точки касания окружностей со сторонами угла

3. МГУ. В четырёхугольнике ABCD расположены две окружности: первая окружность касается сторон AB, BC и AD, а вторая – сторон BC, CD и AD. На сторонах BC и AD взяты точки E и F соответственно так, отрезок EF касается обеих окружностей, а периметр четырёхугольника ABEF на 2p больше периметра четырёхугольника ECDF. Найти AB, если CD = a.

Решение (рис. 1). Так как четырёхугольники ABEF и ECDF вписанные, то по теореме 2 РABEF = 2(AB + EF) и РECDF = 2(CD + EF), по условию

РABEF – РECDF = 2(AB + EF) – 2(CD + EF) = 2p. AB – CD = p. АВ = а + р.

Через две точки касания окружностей со сторонами угла

Опорная задача 1. Прямые АВ и АС – касательные в точках В и С к окружности с центром в точке О. Через произвольную точку Х дуги ВС
проведена касательная к окружности, пересекающая отрезки АВ и АС в точках М и Р соответственно. Докажите, что периметр треугольника АМР и величина угла МОР не зависят от выбора точки Х.

Решение (рис. 5). По теореме 1 МВ = МХ и РС = РХ. Поэтому периметр треугольника АМР равен сумме отрезков АВ и АС. Или удвоенной касательной, проведённой к вневписанной окружности для треугольника АМР. Величина угла МОР измеряется половиной величины угла ВОС, который не зависит от выбора точки Х.

Через две точки касания окружностей со сторонами угла

Опорная задача 2а. В треугольник со сторонами а, b и c вписана окружность, касающаяся стороны АВ и точке К. Найти длину отрезка АК.

Решение (рис. 6). Способ первый (алгебраический). Пусть АК = АN = x, тогда BK = BM = c – x, CM = CN = a – c + x. АС = АN + NC, тогда можем составить уравнение относительно х: b = x + (a – c + x). Откуда Через две точки касания окружностей со сторонами угла.

Способ второй (геометрический). Обратимся к схеме. Отрезки равных касательных, взятые по одному, в сумме дают полупериметр
треугольника. Красный и зелёный составляют сторону а. Тогда интересующий нас отрезок х = р – а. Безусловно, полученные результаты совпадают.

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

Опорная задача 2б. Найти длину отрезка касательной АК, если К – точка касания вневписанной окружности со стороной АВ. Решение (рис. 7). АК = АM = x, тогда BK = BN = c – x, CM = CN. Имеем уравнение b + x = a + (c – x). Откуда Через две точки касания окружностей со сторонами угла. Заметим, что из опорной задачи 1 следует, что СМ = р Δ АВС. b + x = p; х = р – b. Полученные формулы имеют применение в следующих задачах.

4. Найдите радиус окружности, вписанной в прямоугольный треугольник с катетами а, b и гипотенузой с. Решение (рис. 8). Так как OMCN – квадрат, то радиус вписанной окружности равен отрезку касательной CN. Через две точки касания окружностей со сторонами угла.

Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

5. Докажите, что точки касания вписанной и вневписанной окружности со стороной треугольника симметричны относительно середины этой стороны.

Решение (рис. 9). Заметим, АК – отрезок касательной вневписанной окружности для треугольника АВС. По формуле (2) Через две точки касания окружностей со сторонами угла. ВМ – отрезок касательной вписанной окружности для треугольника АВС. По формуле (1) Через две точки касания окружностей со сторонами угла. АК = ВМ, а это и означает, что точки К и М равноудалены от середины стороны АВ, что и требовалось доказать.

Через две точки касания окружностей со сторонами угла

6. К двум окружностям проведены две общие внешние касательные и одна внутренняя. Внутренняя касательная пересекает внешние в точках А, В и касается окружностей в точках А1 и В1. Докажите, что АА1 = ВВ1.

Решение (рис. 10). Стоп… Да что тут решать? Это же просто другая формулировка предыдущей задачи. Очевидно, что одна из окружностей является вписанной, а другая вневписанной для некоего треугольника АВС. А отрезки АА1 и ВВ1 соответствуют отрезкам АК и ВМ задачи 5. Примечательно, что задача, предлагавшаяся на Всероссийской олимпиаде школьников по математике, решается столь очевидным образом.

Через две точки касания окружностей со сторонами угла

7. Стороны пятиугольника в порядке обхода равны 5, 6, 10, 7, 8. Доказать, что в этот пятиугольник нельзя вписать окружность.

Решение (рис. 11). Предположим, что в пятиугольник АВСDE можно вписать окружность. Причём стороны AB, BC, CD, DE и ЕA равны соответственно 5, 6, 10, 7 и 8. Отметим последовательно точки касания – F, G, H, M и N. Пусть длина отрезка AF равна х.

Но, AF = AN. То есть 10 – х = х; х = 5. Однако, отрезок касательной AF не может равняться стороне АВ. Полученное противоречие и доказывает, что в данный пятиугольник нельзя вписать окружность.

8. В шестиугольник вписана окружность, его стороны в порядке обхода равны 1, 2, 3, 4, 5. Найти длину шестой стороны.

Решение. Конечно, можно отрезок касательной обозначить за х, как и в предыдущей задаче, составить уравнение и получить ответ. Но, гораздо эффективнее и эффектнее использовать примечание к теореме 2: суммы сторон описанного шестиугольника, взятых через одну, равны.

Тогда 1 + 3 + 5 = 2 + 4 + х, где х – неизвестная шестая сторона, х = 3.

Через две точки касания окружностей со сторонами угла

9. МГУ, 2003 г. химический факультет, № 6(6). В пятиугольник АВСDE вписана окружность, Р – точка касания этой окружности со стороной ВС. Найдите длину отрезка ВР, если известно, что длины всех сторон пятиугольника есть целые числа, АВ = 1, СD = 3.

Решение (рис.12). Так как длины всех сторон являются целыми числами, то равны дробные части длин отрезков BT, BP, DM, DN, AK и AT. Имеем, АТ + ТВ = 1, и дробные части длин отрезков AT и TB равны. Это возможно только тогда, когда АТ + ТВ = 0,5. По теореме 1 ВТ + ВР.
Значит, ВР = 0,5. Заметим, что условие СD = 3 оказалось невостребованным. Очевидно, авторы задачи предполагали какое-то другое решение. Ответ: 0,5.

Через две точки касания окружностей со сторонами угла

10. В четырёхугольнике ABCD AD = DC, AB = 3, BC = 5. Окружности, вписанные в треугольники ABD и CBD касаются отрезка BD в точках M и N соответственно. Найти длину отрезка MN.

Решение (рис. 13). MN = DN – DM. По формуле (1) для треугольников DBA и DBС соответственно, имеем:

Через две точки касания окружностей со сторонами угла

11. В четырёхугольник ABCD можно вписать окружность. Окружности, вписанные в треугольники ABD и CBD имеют радиусы R и r соответственно. Найти расстояние между центрами этих окружностей.

Решение (рис. 13). Так как по условию четырёхугольник ABCD вписанный, по теореме 2 имеем: AB + DC = AD + BC. Воспользуемся идеей решения предыдущей задачи. Через две точки касания окружностей со сторонами угла. Это означает, что точки касания окружностей с отрезком DM совпадают. Расстояние между центрами окружностей равно сумме радиусов. Ответ: R + r.

Фактически доказано, что условие – в четырёхугольник ABCD можно вписать окружность, равносильно условию – в выпуклом четырехугольнике ABCD окружности, вписанные в треугольники ABC и ADC касаются друг друга. Верно обратное.

Доказать эти два взаимно-обратных утверждения предлагается в следующей задаче, которую можно считать обобщением данной.

Через две точки касания окружностей со сторонами угла

12. В выпуклом четырехугольнике ABCD (рис. 14) окружности, вписанные в треугольники ABC и ADC касаются друг друга. Докажите, что окружности, вписанные в треугольники ABD и BDC также касаются друг друга.

Через две точки касания окружностей со сторонами угла

13. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D так, что окружности, вписанные в треугольники АВD и ACD касаются отрезка AD в одной точке. Найти длину отрезка BD.

Решение (рис. 15). Применим формулу (1) для треугольников ADC и ADB, вычислив DM двумя Через две точки касания окружностей со сторонами угла

Оказывается, D – точка касания со стороной ВС окружности, вписанной в треугольник АВС. Верно обратное: если вершину треугольника соединить с точкой касания вписанной окружности на противоположной стороне, то окружности, вписанные в получившиеся треугольники, касаются друг друга.

Через две точки касания окружностей со сторонами угла

14. Центры О1, О2 и О3 трёх непересекающихся окружностей одинакового радиуса расположены в вершинах треугольника. Из точек О1, О2, О3 проведены касательные к данным окружностям так, как показано на рисунке.

Известно, что эти касательные, пересекаясь, образовали выпуклый шестиугольник, стороны которого через одну покрашены в красный и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.

Решение (рис. 16). Важно понять, как использовать тот факт, что заданные окружности имеют одинаковые радиусы. Заметим, что отрезки ВR и равны, что следует из равенства прямоугольных треугольников О1ВR и O2BM. Аналогично DL = DP, FN = FK. Почленно складываем равенства, затем вычитаем из полученных сумм одинаковые отрезки касательных, проведенных из вершин А, С, и Е шестиугольника ABCDEF: АR и AK, CL и CM, EN и EP. Получаем требуемое.

Вот пример задачи по стереометрии, предлагавшейся на XII Международном математическом турнире старшеклассников “Кубок памяти А. Н. Колмогорова”.

16. Дана пятиугольная пирамида SA1A2A3A4A5. Существует сфера w , которая касается всех ребер пирамиды и другая сфера w 1, которая касается всех сторон основания A1A2A3A4A5 и продолжений боковых рёбер SA1, SA2, SA3, SA4, SA5 за вершины основания. Докажите, что вершина пирамиды равноудалена от вершин основания. (Берлов С. Л., Карпов Д. В.)

Через две точки касания окружностей со сторонами угла

Решение. Пересечение сферы w с плоскостью любой из граней сферы – это вписанная окружность грани. Пересечение сферы w 1 с каждой из граней SAiAi+1 – вневписанная окружность, касающаяся стороны AiAi+1 треугольника SAiAi+1 и продолжений двух других сторон. Обозначим точку касания w 1 с продолжением стороны SAi через Bi. По опорной задаче 1 имеем, что SBi = SBi+1 = pSAiAi+1 , следовательно, периметры всех боковых граней пирамиды равны. Обозначим точку касания w со стороной SAi через Сi. Тогда SC1 = SC2 = SC3 = SC4 = SC5= s,
так как отрезки касательных равны. Пусть CiAi = ai. Тогда pSAiAi+1 = s+ai+ai+1, и из равенства периметров следует, что a1 = a3 = a5 = a2 = a4, откуда SA1 = SA2 = SA3 = SA4 = SA5.

17. ЕГЭ. Диагностическая работа 8.12.2009 г, С–4. Дана трапеция ABCD, основания которой BC = 44, AD = 100, AB = CD = 35. Окружность, касающаяся прямых AD и AC, касается стороны CD в точке K. Найдите длину отрезка CK.

Через две точки касания окружностей со сторонами углаЧерез две точки касания окружностей со сторонами угла

Найдем диагональ AC. Опустим из вершин B и C на сторону AD перпендикуляры BE и CF соответственно. AE = FD, так как трапеция равнобедренная. BCFE – прямоугольник.

Через две точки касания окружностей со сторонами угла

Возможны две геометрические конфигурации.

Первый случай (рис. 18): окружность вписана в треугольник ACD.

По формуле (1) Через две точки касания окружностей со сторонами угла

Второй вариант (рис.19): окружность касается продолжений сторон AC и AD за точками C и D соответственно и отрезка CD.

По формуле (2) Через две точки касания окружностей со сторонами угла

Через две точки касания окружностей со сторонами угла

18. ЕГЭ. 4.6. 2010 г. В треугольнике АВС АВ = 13, ВС = 11, СА = 9. Точка D лежит на прямой АС, причём АD : = 1 : 9. Окружности, вписанные в каждый из треугольников ВDС и ВDА, касаются стороны ВD в точках Е и F. Найдите длину отрезка EF.

Решение. Возможны два случая (рис. 20 и рис. 21). По формуле (1) найдём длины отрезков DE и DF.

Через две точки касания окружностей со сторонами угла

В первом случае AD = 0,1АС, СD = 0,9AC. Во втором – AD = 0,125АС, СD = 1,125AC. Подставляем данные и получаем ответ: 4,6 или 5,5.

Задачи для самостоятельного решения/

Через две точки касания окружностей со сторонами угла

1. Периметр равнобедренной трапеции, описанной около окружности равен 2р. Найдите проекцию диагонали трапеции на большее основание. (1/2р)

2. Открытый банк задач ЕГЭ по математике. В4. К окружности, вписанной в треугольник ABC (рис. 22), проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. (24)

3. В треугольник АВС вписана окружность. MN – касательная к окружности, M Î АС, N Î ВС, ВС = 13, АС = 14, АВ = 15. Найдите периметр треугольника MNC. (12)

4. К окружности, вписанной в квадрат со стороной а, проведена касательная, пересекающая две его стороны. Найдите периметр отсечённого треугольника. (а)

5. Окружность вписана в пятиугольник со сторонами а, d, c, d и e. Найдите отрезки, на которые точка касания делит сторону, равную а.

Ответ: Через две точки касания окружностей со сторонами угла

6. В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсечённого треугольника. (16)

7. CD – медиана треугольника ABC. Окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD в точках M и N. Найдите MN, если АСВС = 2. (1)

8. В треугольнике АВС со сторонами а, b и c на стороне ВС отмечена точка D. К окружностям, вписанным в треугольники АВD и ACD, проведена общая касательная, пересекающая AD в точке М. Найти длину отрезка АМ. (Длина АМ не зависит от положения точки D и
равна ½ (c + b – a))

9. В прямоугольный треугольник вписана окружность радиуса а. Радиус окружности, касающейся гипотенузы и продолжений катетов, равен R. Найдите длину гипотенузы. (R – a)

10. В треугольнике АВС известны длины сторон: АВ = с, АС = b, ВС = а. Вписанная в треугольник окружность касается стороны АВ в точке С1. Вневписанная окружность касается продолжения стороны АВ за точку А в точке С2. Определите длину отрезка С1С2. (b)

11. Найдите длины сторон треугольника, разделённых точкой касания вписанной окружности радиуса 3 см на отрезки 4 см и 3 см. (7, 24 и 25 см в прямоугольном треугольнике)

12. Соросовская олимпиада 1996 г, 2 тур, 11 класс. Дан треугольник АВС, на сторонах которого отмечены точки А1, В1, С1. Радиусы окружностей вписанных в треугольники АС1В1, ВС1А1, СА1В1 равны по r. Радиус окружности, вписанной в треугольник А1В1С1 равен R. Найти радиус окружности, вписанной в треугольник АВС. (R + r).

Задачи 4–8 взяты из задачника Гордина Р. К. “Геометрия. Планиметрия.” Москва. Издательство МЦНМО. 2004.

💥 Видео

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

ОГЭ Задание 26 Внешнее касание двух окружностейСкачать

ОГЭ Задание 26 Внешнее касание двух окружностей

Касание окружностей | Задачи 16-21 | Решение задач | Волчкевич | Уроки геометрии 7-8 классСкачать

Касание окружностей | Задачи 16-21 | Решение задач | Волчкевич | Уроки геометрии 7-8 класс

ЕГЭ Задание 16 Две окружностиСкачать

ЕГЭ Задание 16 Две окружности

ЕГЭ Задание 16 Две касающиеся окружностиСкачать

ЕГЭ Задание 16 Две касающиеся окружности

Параметр. Серия 13. Решение задач с окружностями. Касание двух окружностейСкачать

Параметр. Серия 13. Решение задач с окружностями. Касание двух окружностей

#59. Олимпиадная задача о касательной к окружности!Скачать

#59. Олимпиадная задача о касательной к окружности!

ЕГЭ Задание 16 Две окружностиСкачать

ЕГЭ Задание 16 Две окружности

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать

ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"

Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать

Отрезки касательных из одной точки до точек касания окружности равны | Окружность |  Геометрия

ЕГЭ Задание 16 Внутреннее касание двух окружностейСкачать

ЕГЭ Задание 16 Внутреннее касание двух окружностей

🔴 В угол C, равный 165°, вписана окружность с ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

🔴 В угол C, равный 165°, вписана окружность с ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать

Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)
Поделиться или сохранить к себе: