Содержание:
Пусть в природе не существовало бы ни одного круга или треугольника, и все-таки истины, доказанные Евклидом, навсегда сохранили бы свою достоверность и очевидность.
Раньше вы знакомились с основными геометрическими фигурами, устанавливали особенности этих фигур и их взаимное расположение. Но на практике довольно часто приходится решать «обратную» задачу — по определенным особенностям находить фигуру, имеющую их. Именно таково содержание задач на построение, которые будут рассматриваться в этом разделе.
Еще в работах древнегреческих математиков описаны задачи на построение и методы их решения.
Многие из этих задач составляют классику евклидовой геометрии. Кроме практической ценности, такие задачи представляют значительный исследовательский интерес, поскольку в ходе их решения определяются новые особенности построенных фигур.
Окружность и круг:
Определение. Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, равноудаленных от данной точки, которая называется центром окружности.
Радиусом окружности называется отрезок, соединяющий центр окружности с любой точкой на окружности (или длина этого отрезка).
Хордой окружности называется отрезок, соединяющий две точки окружности.
Диаметром окружности называется хорда, проходящая через центр окружности.
Дугой окружности называется часть окружности, ограниченная двумя точками.
На рисунке 48 точка О — центр, отрезок ОС — радиус окружности. Радиус обозначают буквой R (или
На рисунке 49 изображены: хорда ЕН, дуга КМ (обозначается: ), диаметр АВ. Диаметр состоит из двух радиусов. Поэтому диаметры окружности равны между собой. Диаметр АВ состоит из радиусов OA и ОВ, откуда Диаметр обозначают буквой D (или d). Тогда
Любые две точки окружности разбивают ее на две дуги, которые дополняют друг друга до окружности. Эти дуги так и называются — дополнительными. Чтобы различать такие дуги, их иногда обозначают тремя буквами. На рисунке 49 дуги АКМ и АНМ — дополнительные.
Определение. Кругом называется часть плоскости, ограниченная окружностью.
Точки окружности также принадлежат кругу (рис. 50). Поэтому центр, радиус, хорда и диаметр у круга те же, что и у его окружности.
Часть круга, заключенная между двумя радиусами, называется сектором. Часть круга, заключенная между дугой окружности и хордой, соединяющей концы дуги, называется сегментом (рис. 51). Два радиуса разбивают круг на два сектора, хорда разбивает круг на два сегмента.
Полуокружностью называется дуга окружности, концы которой являются концами диаметра. Полукругом называется часть круга, ограниченная полуокружностью и диаметром, соединяющим концы полуокружности. На рисунке 49 дуга АКВ — полуокружность, сегмент АКВ — полукруг.
Угол, вершина которого находится в центре окружности, называется центральным углом. На рисунке 51 — центральный угол.
Окружности (круги) равны, если равны их радиусы.
Две окружности могут не иметь общих точек, могут пересекаться в двух точках или касаться друг друга в одной точке. Окружности разного радиуса с общим центром называются концентрическими. Часть плоскости между двумя концентрическими окружностями называется кольцом (рис. 52).
- Определение окружности и круга
- Определение окружности и ее элементов
- Что такое окружность и круг
- Пример №3
- Окружность и треугольник
- Описанная окружность
- Вписанная окружность
- Пример №4
- Пример №5
- Геометрические построения
- Пример №6
- Пример №7
- Пример №8
- Пример №9
- Пример №10
- Пример №11
- Пример №12
- Пример №13
- Задачи на построение
- Пример №14
- Пример №15
- Пример №16
- Пример №17
- Свойство диаметра, перпендикулярного хорде
- Касательная к окружности
- Признак касательной
- Свойство отрезков касательных
- Касание двух окружностей
- Задачи на построение
- Основные задачи на построение
- Решение задач на построение
- Пример №18
- Геометрическое место точек
- Основные теоремы о ГМТ
- Метод геометрических мест
- Пример №19
- Описанная и вписанная окружности треугольника
- Окружность, вписанная в треугольник
- Пример №20
- Задачи, которые невозможно решить с помощью циркуля и линейки
- Циркуль или линейка
- Об аксиомах геометрии
- Метод вспомогательного треугольника
- Пример №21
- Пример №22
- Пример №23
- Реальная геометрия
- Справочный материал по окружности и кругу
- Что называют окружностью
- Окружность, вписанная в треугольник
- Окружность, описанная около треугольника
- Геометрическое место точек в окружности и круге
- Некоторые свойства окружности. Касательная к окружности
- Через две различные точки можно провести только одну окружность
- Через две различные точки можно провести только одну окружность
- 📸 Видео
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Определение окружности и круга
Окружность — это замкнутая линия на плоскости, все точки которой находятся на одинаковом расстоянии от одной точки — центра окружности.
Круг — это внутренняя часть плоскости, ограниченная окружностью.
Размеры окружности и круга определяются их радиусом — отрезком, который соединяет центр с точкой на окружности (рис. 3).
В математике «окружность» и «круг» — два различных, хотя и связанных между собой, понятия. Окружность, например, является моделью обруча, а круг — моделью крышки люка.
Определение окружности и ее элементов
Пусть на плоскости отмечена точка О. Очевидно, что от точки О можно отложить бесконечное множество отрезков длиной R (рис. 162). Концы всех таких отрезков на плоскости образуют окружность — фигуру, уже известную из курса математики. Определение Окружностью называется геометрическая фигура, состоящая из всех точек плоскости, удаленных от данной точки (центра окружности) на одинаковое расстояние. Иначе говорят, что все точки окружности равноудалены от ее центра. Определение Кругом называется часть плоскости, ограниченная окружностью и содержащая ее центр. Иначе говоря, круг состоит из всех точек плоскости, удаленных от данной точки (центра круга) на расстояние, не превышающее заданного. На рисунке 163 заштрихованная часть плоскости — круг, ограниченный окружностью с тем же центром. Центр окружности и круга является точкой круга, но не является точкой окружности.
Определение Радиусом окружности (круга) называется расстояние от центра окружности до любой ее точки. Радиусом также называется любой отрезок, соединяющий точку окружности с ее центром. На рисунке 162 — радиусы окружности с центром О. Как правило, радиус обозначается буквой R (или r ).
Радиус — от латинского «радиус» — луч, спица
Хорда — от греческого «хорда» — струна, тетива
Диаметр — от греческого «диа» — насквозь и «метрео» — измеряющий насквозь; другое значение этого слова — поперечник
Радиусом также называется любой отрезок, соединяющий точку окружности с ее центром. На рисунке 162 — радиусы окружности с центром О. Как правило, радиус обозначается буквой R (или r ).
Определение:
Хордой называется отрезок, соединяющий две точки окружности.
Диаметром называется хорда, проходящая через центр окружности.
На рисунке 164 изображены две хорды окружности, одна из которых является ее диаметром. Обычно диаметр обозначают буквой d. Очевидно, что диаметр вдвое больше радиуса, то есть d = 2R.
Построение окружности выполняют с помощью циркуля.
Видео:Через две различные точки на плоскости проходит ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Что такое окружность и круг
Окружность — это фигура, состоящая из всех точек плоскости, равноудален ных от данной точки. Эту точку называют центром окружности.
Отрезок, соединяющий любую точку окружности с ее центром, называют ради усом. Отрезок, соединяющий две против вольные точки окружности, — хорда окружности. Хорда, проходящая через центр окружности, — диаметр (рис. 200). Каждый диаметр окружности состоит’ из двух радиусов, поэтому его длина вдвое больше длины радиуса. Длина хорды, не проходящей через центр окружности, меньше длины диаметра, (Почему?)
Окружность на бумаге описывают МА и MB — перпендикуляры на ОА и ОВ (см. рис. 216), то (по гипотенузе и острому углу). Поэтом МА = MB, следовательно, точка М равноудалена от сторон данного угла.
Геометрическим местом точек угла, равноудаленных от его сторон, является биссектриса этого угла.
Здесь имеются в виду углы меньше развернутого.
Верно ли, что геометрическим местом точек, равноудален-ных от сторон угла, является биссектриса этого угла? Нет. Когда в планиметрии говорят о геометрическом месте точек, не уточняя, о каких именно точках идет речь, то имеют в виду точки плоскости, которой принадлежит данная фигура. При таком условии геометрическим местом точек, равноудаленных от ф сторон угла, является объединение биссектрисы I данного угле g и всех точек некоего другого угла, показанного на рисунке 217,
Ведь каждая точка угла КОР также равноудалена от сторон донного угла АО В (речь идет об углах меньше развернутого).
Когда мы говорим, что геометрическим местом точек, равноудаленных от концов отрезка, является серединный перпендикуляр этого отрезка, то мы имеем в виду, что речь идет о геометрическом месте точек плоскости, на которой лежит отрезок.
А геометрическим местом точек пространства, равноудаленных от концов отрезка, является некая плоскость (мал. 218).
Подумайте, как расположена эта плоскость относительно денного отрезка.
Геометрические места точек пространства изучают в старших классах.
Пример №3
Докажите, что серединные перпендикуляры двух сторон треугольника пересекаются.
Решение:
Пусть n и m— серединные перпендикуляры сторон ВС и АВ треугольника (рис. 219). Докажем, что они не могут быть параллельны. Доказывать будем от противного. Допустим, что n || m. Тогда прямая, перпендикулярная к п, должна быть перпендикулярной и к m, то есть . Но по условию А две прямые, перпендикулярные к третьей прямой, параллельны. Таким образом, из допущения, что п || т, следует параллельность сторон АВ и ВС треугольника. А этого не может быть. Поэтому прямые ли т не могут быть параллельными. Они пересекаются.
Окружность и треугольник
Окружность и треугольник могут не иметь общих точек или иметь 1, 2, 3, 4, 5, 6 общих точек (соответствующие рисунки выполните самостоятельно). Заслуживаем внимания случаи, когда окружность проходит через все три вершины треугольника или когда она касается всех и сторон треугольника. Рассмотрим такие случаи подробнее.
Описанная окружность
Окружность называется описанной около треугольника, если она проходит через все вершины треугольника (рис. 223).
Теорема: Около каждого треугольника можно описать только одну окружность. Ее центром является точка пересечения серединных перпендикуляров двух сторон треугольника.
Пусть ABC — произвольный треугольник (рис. 224). Найдем точку, равноудаленную от вершин А, В и С.’ Метрическое место точек, равноудаленных от А и В, — серединный перпендикуляр m отрезка АВ; геометрическое место точек, равноудаленна от В и С, — серединный перпендикуляр n отрезка ВС. Эти два серединных перпендикуляра не могут быть параллельными, они пересекаются в точке О. А она равноудалена от Н и С. Следовательно, ОА = ОВ = ОС, поэтому О — центр окружности, описанной около ABC.
Для каждого отрезка АВ существует серединный перпендикуляр, и только один, а для ВС — серединный перпендикуляр и только один. И точка их пересечения существует всегда, только одна. Таким образом, около каждого треугольника можно описать одну окружность, и только одну.
- Серединные перпендикуляры всех трех сторон произвольного треугольника проходят через одну и ту же точку.
- Через любые три точки, не лежащие на одной прямой, можно провести окружность, и только одну.
Из доказанной теоремы следует cnocof построения окружности, описанной около треугольника. Чтобы описать около треугольника ABC окружность, достаточно:
- построить серединные перпендикуляры двух сторон данного треугольника;
- определить точку О, в которой эти серединные перпендикуляры пересекаются;
- ) из центра О провести окружность радиуса ОА.
Центр окружности, описанной около треугольника, может лежать во внутренней или внешней области данного треугольника либо на его сторон (рис. 225).
Вписанная окружность
Окружность называется вписанной в треугольник если она касается всех сторон треугольника (рис. 226). Центр окружности, вписанной в треугольник, лежим’ и внутренней области этого треугольник.
Теорема: В каждый треугольник можно вписан только одну окружность. Ее центром является точка пересечения двух биссектрис треугольника.
Доказательство:
Пусть ABC — произвольный треугольник. Определим точи О, равноудаленную от всех его сторон (рис. 227). Геометрическое место точек, лежащих внутри угла А и равноудаленных второй АВ и АС, — биссектриса l угла А. Гtjметрическое место точек, равноудаленных от сторон АВ и ВС и лежащих внутри угла В, — биссектриса t угла B. Эти две биссектрисы обязательно Пересекаются (докажите это!). Точка U, в которой пересекаются биссектрисы l и t, равноудалена от всех трех сторон данного треугольника. Следовательно, точка О — центр окружности, Вписанной в треугольник АВС.
В каждом треугольнике все три биссектрисы пересекаются в одной точке.
Из доказанной теоремы следует способ построения окружности, вписанной в треугольник. Чтобы вписать в данный треугольник окружность, достаточно:
- провести две его биссектрисы;
- из точки их пересечения О опустить перпендикуляр OL на произвольную сторону треугольника;
- из центра О радиуса OL описать окружность. Она касается каждой стороны треугольника, следовательно, является вписанной в данный треугольник.
Теорема: Центром окружности, описанной около прямоугольного треугольника, является середина его гипотенузы.
Пусть ABC — произвольный треугольник с прямым углом С, t— серединный перпендикуляр катета АС, пересекающий гипотенузу АВ в точке О (рис. 228).
Поскольку точка О лежит на серединном перпендикуляре отрезка АС, то .
точка О—середина гипотенузы АВ, равноудаленная от всех вершин треугольника. Таким образом, окружность с центром О и радиусом ОА проходит через все вершины данного треугольника.
Диаметр окружности, описанной около прямоугольного треугольника, равен его гипотенузе.
Теорема: Из любой точки окружности ее Диаметр, не выходящий из этой точки, виден под прямым углом.
Доказательство:
Пусть АВ — произвольный диаметр окружности с центром О, а С— произвольная точка окружности, отличная от А и В (рис. 229). Покажем, чтоПоскольку
Геометрическим местом точек плоскости, из которых отрезок АВ виден под прямым углом, является окружность диаметра АВ. На самом деле этому ГМТ точки А и В не принадлежат. Подробнее об этом вы узнаете в старших классах.
Пример №4
Найдите радиус окружности, описанной около прямоугольного треугольника с гипотенузой 6 см.
Решение:
Диаметр окружности, описанной около прямоугольного треугольника, является его гипотенузой. Радиус вдвое меньше: 3 см.
Пример №5
Докажите, что диаметр окружности, вписанной в прямоугольный треугольник с катетами а и Ь и гипотенузой с, равен a + b — c.
Решение:
Пусть в угол С прямой, а К, Р, Т — точки касания вписанной в треугольник окружности (рис. 230). Поскольку АР =АТ и ВК = ВТ, то АС + ВС — АВ = PC + СК = 2r, или 2r = a + b- с.
Геометрические построения
Пользуясь линейкой’ и циркулем, моле но выполнить много геометрических построений, то есть начертить геометрические фигуры. Рассмотрим сначала, как выполняются самые простые геометрические построения.
Пример №6
Постройте треугольник по данным сторонам.
Решение:
Пусть даны три отрезки а, b и с (рис. 232). Нужно построить, треугольник, стороны которого были бы равны этим отрезкам. С помощью линейки проводим произвольную прямую, обозначаем на ней произвольную точку В и циркулем откладываем на этой прямой отрезок ВС = а. Раствором циркуля, равным с описываем дугу окружности с центром В. С той же стороны от прямой СВ описываем дугу окружности радиуса b с центром С. Точку пересечения А этих дуг соединяем отрезками с С и В. Треугольник ABC — именно тот, который требовалось построить, так как его стороны ВС, АС и АВ равны данным отрезкам.
Если построенные дуги не пересекаются, требуемый треугольник построить невозможно. Это бывшие в том случае, когда один из данных отрезков больше суммы двух других или равен их сумме.
Пример №7
Постройте угол, равный данному углу.
Решение:
Пусть дан угол АОВ и требуется построить угол КРТ, равный (рис. 233). Проводим луч РТ и дуг* равных радиусов с центрами О и Р. Пусть одна из этих д пересекает стороны угла АОВ в точках А и В, а другая луч РТ в точке Т. Дальше раствором циркуля, равным А/ описываем третью дугу с центром Т. Если она пересекает другую дугу в точке К, проводим луч РК. Угол КРТ — то 1 Будем считать, что линейка без делений.
который требовалось построить. Ведь треугольники КРТ и АОВ равны (по трем сторонам), поэтому
Пример №8
Постройте биссектрису данного угла.
Решение:
Пусть АОВ — данный угол (рис. 234). Произвольным раствором циркуля опишем дугу с центром О. Пусть А и В — точки пересечения этой дуги с лучами О А и ОВ. Из центров А и В опишем дуги такими же радиусами. Если D — точка пересечения этих дуг, то луч OD — биссектриса угла АОВ.
Действительно, (по трем сторонам). Поэтому
Пример №9
Разделите данный отрезок пополам.
Решение:
Пусть АВ — данный отрезок (рис. 235). Из точек А и В радиусом АВ описываем дуги. Они пересекутся в неких точках С и D.
Прямая CD точкой М разделит данный отрезок пополам.
Действительно, по трем сторонам , поэтому По первому признаку равенства треугольников . Итак, AM = ВМ.
Пример №10
Через данную точку Р проведите прямую, перпендикулярную и данной прямой а.
Решение:
В зависимости от того, лежит или не лежит точка Р на прямой а, задачу можно решить, как показа но на рисунках 236 и 237. Опишите и аргументируйте эти построения самостоятельно.
Пример №11
Через точку Р, не лежащую на прямой АВ, проведите прямую, параллельную прямой АВ.
Решение:
Через точку Р и про из вольную точку А прямой АВ проводим прямую АТ (рис. 238). Строим угол ТРМ, равный углу РАВ, так, что бы эти углы стали соответственны ми при прямых РК, АВ и секущей АР. Построенная таким образом пря мая РК удовлетворяет задачу: она проходит через данную точку Р и параллельна прямой АВ, поскольку
Геометрическими построениями часто приходилось заниматься многим людям. Еще в доисторические времена мастера, изготавливающие колеса к колесницам, умели делить окружность на несколько равных частей. В наше время выполнять такие построения приходится специалистам, проектирующим или изготавливающим шестеренки, дисковые пилы (рис. 239), турбины и различные роторные механизмы. Как бы вы разделили окружность, например, на 5, 6 или 7 равных частей?
Основные чертежные инструменты — линейка и циркуль — были известны еще несколько тысячелетий назад.
Слово линейка происходит от слова линия, которое на латинском языке сначала означало «льняная нитка», «черта, проведенная ниткой, бечевкой» (производное от лат. Плит — лен). Слово циркуль тоже латинского происхождения, первоначально слово циркулюс означало «окружность, круг», а потом стало означать инструмент, с помощью которого проводят окружности.
В Древней Греции линейку и циркуль признавали единственными приборами геометрических построений. Задачу на построение считали решенной, если все построения в ней выполнялись только с помощью линейки и циркуля. Сейчас специалисты при выполнении построений пользуются угольником, транспортиром, рейсмусом, рейсшиной и другими чертежными приспособлениями.
Пример №12
Разделите данную дугу окружности на две равные части.
Решение:
Пусть дана дуга АВ окружности с центром О (рис. 240). Представим угол АОВ и проведем его биссектрису ОК. Треугольники АОК и КОВ равны, поэтому и дуги АК и КВ равны.
Пример №13
Постройте угол вдвое больше данною.
Решение:
Пусть АОВ — данный угол (рис. 241) Опишем дугу окружности с центром О Если она пересечет стороны данного угла в точках А и В, из В как из центра сделаем засечку ВС = ВА и проведем луч ОС. Угол АОС вдвое больше
Задачи на построение
С геометрическими построениями имеют дело различные специалисты. Геометрические построении выполняют чертежники, архитекторы, конструкторы, топографы, геодезисты, штурманы. Разные геометрические фигуры строят также: слесарь — на жести, столяр — на доске, портной— на ткани, садовник — на земле.
В задаче на построение требуется построить геометрическую фигуру, которая должна удовлетворять определенные условия. В геометрии построения выполняют чаще всего с помощь к линейки и циркуля. Условимся: если в задаче не сказано, какими инструментами следует выполнить построение, то имеются в виду только линейка (без делений) и циркуль.
Более сложные задачи на построение часто решают методом геометрических мест. Пусть, например, в задаче требуете!’ найти точку X, удовлетворяющую два условия. Если первое условие удовлетворяют точки фигуры К, а второе — точки фигуры Р, то X должна принадлежать каждой из этих фигур. Тс есть X — точка пересечения фигур К и Р.
Пример №14
Постройте прямоугольный треугольник по да» ному катету а и гипотенузе с (рис. 243).
Решение:
Строим прямой угол АСВ, на его стороне откладываем отрезок СВ = а. Точки С и В — две вершины треугольника, который требуется построить. Третья верши» должна лежать, во-первых, на луче СА, во-вторых, на pfti стоянии с от В, то есть на окружности радиуса с с центр В. Если эту окружность пересекает луч СА в точке А, 1 треугольник ABC — именно тот, который требовалось не строить. Ведь его угол С прямой, ВС = а, ВА = с.
Второй способ (рис. 244). Откладываем отрезок АВ = с и проводим окружность диаметра АВ — ГМТ, из которых АВ виден под прямым углом. Дальше строим полуокружность радиуса а с центром В — ГМТ, удаленных от В на расстояние а и лежащих по одну сторону от прямой АВ. Если два ГМТ пересекаются в точке С, то треугольник ABC — именно тот, который требовалось построить.
Составные части решения задачи на построение — анализ, построение, доказательство и исследование. В анализе ищут способ решения задачи, в построении выполняется само построение, в доказательстве обосновывается правильность выполненного построения, в исследовании выясняется, сколько решений имеет задача.
Пример №15
Постройте треугольник по данной стороне, прилежащему к ней углу и сумме двух других сторон (рис. 245).
Решение:
Анализ. Допустим, что требуемый треугольник ABC построен. Его сторона с и угол А = а — даны. Дан также отрезок, равный сумме сторон а и b. По данным отрезкам с и а + b и углу А между ними можно построить A ABD. Вершиной С искомого треугольника будет такая точка отрезка AD, для которой CD = СВ. Следовательно, точка С должна лежать и на серединном перпендикуляре отрезка BD.
Построение. По двум данным отрезкам и углу между ними строим , после чего проводим серединный перпендикуляр I отрезка BD. Пусть прямая I пересекает отрезок АВ в точке С. Проводим отрезок СВ. Треугольник ABC — такой, который требовалось построить.
Доказательство:
В треугольнике по построению. АС + СВ — АС + CD — а + b. Следовательно, удовлетворяет все условия задачи.
Исследование. Задача имеет решение только при условии, что а + b > с.
Если задача несложная и способ ее решения известен, анализ можно не описывать. А в решении не обязательно выделять анализ, построение, доказательство и исследование.
В математике чаще всего имеют дело с задачами: на вычисление, на доказательство, на построение, на преобразование и на исследование. Геометрическими задачами на построение активно интересовались античные геометры. Допуская лишь классические построения (выполняемые только линейкой и циркулем), они исследовали, какие из построений можно вы-полнить, а какие невозможно. В частности, выясняли:
- можно ли любой угол разделить на три равные части;
- можно ли построить квадрат, площадь которого была бы равна площади данного круга;
- можно ли построить ребро такого куба, объем которого был бы в 2 раза больше объема данного куба.
Много столетий выдающиеся геометры пытались решить эти задачи и не смогли. Эти три классические задачи древности получили специальные названия:
- трисекция угла,
- 2квадратура круга,
- удвоение куба.
Последнюю задачу называют еще делосской задачей, связывая ее с древнегреческой легендой. согласно которой оракул бога Аполлона согласился спасти жителей острова Делос от чумы, если кубический жертовник в делосском храме заменят на жертовник такой же формы, но вдвое большего объема. Только почти через 2000 лет ученые убедились, что ни одну из этих трех задач с помощью лишь линейки и циркуля решить невозможно.
В настоящее время специалисты, которым приходится выполнять геометрические построения, пользуются не только линейкой и циркулем. С точки зрения классических методов такие построения приближенные. Но для практических нужд точности, которую обеспечивают приближенные методы, вполне достаточно
Пример №16
Найдите центр данной окружности.
Решение:
Обозначим на данной окружности три производные точки А, В и С (рис. 246).
Представим хорды АВ, ВС и проведем их серединные перпендикуляры n и m. Точка О, в которой пересекаются прямые n и m., — центр данной окружности. Ведь ОА = ОВ = ОС.
Пример №17
Через данную точку проведите касательную к данной окружности.
Решение:
Если данная точка А лежит на окружности центра О (рис. 247, а), проводим луч ОА, потом — прямую АК, перпендикулярную к ОА. Прямая АК — касательная, которую и требовалось построить.
Если точка А лежит вне данной окружности центра О (рис. 247, б), то на диаметре ОА описываем окружность. Она пересечется с данной окружностью в двух точках К и Р. Прямые АК и АР — искомые касательные, поскольку (Из точек К и Р вспомогательной окружности ее диаметр ОМ виден под прямыми углами АКО и АРО.) В этом случае задача имеет два решения.
Свойство диаметра, перпендикулярного хорде
Диаметр, перпендикулярный хорде, проходит через ее середину. Докажите.
Решение
Пусть СО — диаметр окружности с центром О, АВ — хорда этой окружности, Докажем, что М — точка пересечения отрезков АВ и СD— середина отрезка АВ.
В случае, когда хорда АВ сама является диаметром, точка М совпадает с центром О и утверждение задачи очевидно. Пусть хорда АВ не является диаметром (рис. 165). Проведем радиусы OA и ОВ. Тогда в равнобедренном треугольнике АОВ высота ОМ является медианой. Итак, AM = ВМ, что и требовалось доказать.
Докажите самостоятельно еще одно утверждение (опорное): диаметр окружности, проведенной через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.
Касательная к окружности
Определение и свойство касательной
Любая прямая, проходящая через точки окружности, называется секущей; ее отрезок, лежащий внутри окружности, является хордой. На рисунке 167 хорда CD — отрезок секущей b . Рассмотрим теперь прямую, имеющую с окружностью только одну общую точку.
Определение:
Касательной к окружности называется прямая, имеющая с окружностью единственную общую точку. Общая точка касательной и окружности называется точкой касания.
На рисунке 167 прямая а является касательной к окружности с центром О. Иначе говоря, прямая а касается окружности с центром О в точке А .
Определим взаимное расположение касательной и радиуса окружности, проведенного в точку касания.
Теорема (свойство касательной)
Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
Доказательство:
Пусть прямая а касается окружности с центром О в точке А (рис. 168). Докажем, что Применим метод доказательства от противного.
Пусть отрезок OA не является перпендикуляром к прямой а. Тогда, по теореме о существовании и единственности перпендикуляра к прямой, из точки О можно провести перпендикуляр ОB к прямой а . На луче АВ от точки В отложим отрезок ВС, равный АВ , и соединим точки О и С . Поскольку по построению отрезок ОВ — медиана и высота треугольника АОС, то этот треугольник равнобедренный с основанием АС, то есть OA = ОС . Таким образом, расстояние между точками О и С равно радиусу окружности, и, по определению радиуса, точка С должна лежать на данной окружности. Но это противоречит определению касательной, поскольку А — единственная общая точка окружности с прямой а. Из этого противоречия следует, что наше предположение неверно, то есть OA . Теорема доказана.
Признак касательной
Докажем теорему, обратную предыдущей.
Теорема: (признак касательной)
Если прямая проходит через точку окружности перпендикулярно радиусу, проведенному в эту точку, то она является касательной к окружности.
Доказательство:
Пусть прямая а проходит через точку А, лежащую на окружности с центром О, причем . Докажем, что а — касательная к окружности. Согласно определению касательной, нам необходимо доказать, что окружность имеет с прямой а единственную общую точку. Применим метод доказательства от противного.
Пусть прямая а имеет с окружностью общую точку В , отличную от А (рис. 169). Тогда из определения окружности ОА = ОВ как радиусы, то есть треугольник АОВ равнобедренный с основанием АВ. По свойству углов равнобедренного треугольника , что противоречит теореме о сумме углов треугольника.
Следовательно, точка А — единственная общая точка окружности и прямой а, значит, прямая а — касательная к окружности.
Свойство отрезков касательных
Пусть даны окружность с центром О и точка А, не принадлежащая кругу, ограниченному данной окружностью (рис. 170).
Через точку А можно провести две касательные к данной окружности. Отрезки, соединяющие данную точку А с точками касания, называют отрезками касательных, проведенных из точки А к данной окружности. На рисунке 170 АВ и АС — отрезки касательных, проведенных к окружности из точки А .
Опорная задача
Отрезки касательных, проведенных из данной точки к окружности, равны. Докажите.
Решение
Пусть АВ и АС — отрезки касательных, проведенных к окружности с центром О из точки А (рис. 170). Рассмотрим треугольники АОВ и АОС. По свойству касательной то есть эти треугольники являются прямоугольными с общей гипотенузой АО и равными катетами ОВ = ОС как радиусы окружности). Следовательно, по гипотенузе и катету, откуда АВ = АС.
Касание двух окружностей
Определение:
Две окружности, имеющие общую точку, касаются в этой точке, если они имеют в ней общую касательную.
Общая точка двух окружностей в таком случае называется точкой касания окружностей.
Различают два вида касания окружностей: внутреннее и внешнее.
Касание окружностей называется внутренним, если центры окружностей лежат по одну сторону от общей касательной, проведенной через точку касания (рис. 171, а);
Касание окружностей называется внешним, если центры окружностей лежат по разные стороны от общей касательной, проведенной через точку касания (рис. 171, б).
Рис. 171 Касание двух окружностей. 1. внутреннее; 2. внешнее.
По свойству касательной радиусы данных окружностей, проведенные в точку касания, перпендикулярны общей касательной. Из теоремы о существовании и единственности прямой, перпендикулярной данной, следует, что центры касающихся окружностей и точка касания окружнос тей лежат на одной прямой.
Касающиеся окружности имеют единствен ную общую точку — точку касания.
Если данные окружности имеют радиусы R и r (R > r), то расстояние между центрами окружностей равно R-r в случае внутреннего касания и R+r в случае внешнего касания.
Задачи на построение
Что такое задачи на построение?
Задачи на построение представляют собой отдельный класс геометрических задач, решение которых подчиняется определенным правилам. Цель решения этих задач — построение геометрических фигур с заданными свойствами с помощью чертежных инструментов. Если в условии задачи нет специальных примечаний, то имеются в виду построения с помощью циркуля и линейки. С помощью линейки можно провести:
- произвольную прямую;
- прямую, проходящую через данную точку;
- прямую, проходящую через две данные точки.
Заметим, что никаких других построений линейкой выполнять нельзя. В частности, с помощью линейки нельзя откладывать отрезки заданной длины.
Циркуль — от латинского «циркулус» — окружность, круг.
С помощью циркуля можно:
- провести окружность (часть окружности) произвольного или заданного радиуса с произвольным или заданным центром;
- отложить от начала данного луча отрезок заданной длины.
Кроме того, можно отмечать на плоскости точки и находить точки пересечения прямых и окружностей.
Все перечисленные операции называют элементарными построениями, а решить задачу на построение — это значит найти последовательность элементарных построений, после выполнения которых искомая фигура считается построенной, и доказать, что именно эта фигура удовлетворяет условию задачи.
Итак, решение задач на построение заключается не столько в самом построении фигуры, сколько в нахождении способа построения и доказательстве того, что полученная фигура искомая.
Основные задачи на построение
Если каждый шаг построений описывать полностью, решение некоторых задач может оказаться довольно громоздким. С целью упрощения работы выделяют несколько важнейших задач, которые считаются основными и не детализируются каждый раз при решении более сложных задач.
Построение треугольника с данными сторонами | |||||||||||||||||||||||||||||||||||
Построение биссектрисы угла | |
Пусть дан неразвернутый угол с вершиной А . Построим его биссектрису. | |
С помощью циркуля построим окружность произвольного радиуса с центром А . Пусть В к С — точки пересечения этой окружности со сторонами данного угла. | |
Построим окружности того же радиуса с центрами В и С . Пусть D — точка пересечения этих окружностей. | |
Проведем луч AD. По построению (по третьему признаку). Отсюда , то есть AD — биссектриса данного угла А . |
Построение перпендикулярной прямой | |
Пусть даны прямая а и точка О . Построим прямую, проходящую через точку О и перпендикулярную прямой а . Рассмотрим два случая | |
Точка O лежит на прямой а | |
Построим окружности радиуса АВ с центрами А и В. Пусть С — одна из точек их пересечения. Проведем прямую через точки С и О. | |
По построению отрезок СО — медиана равностороннего треугольника ABC , которая является также его высотой. Итак, , то есть прямая СО — искомая. | |
Точка O не лежит на прямой а | |
Построим окружность с центром О , которая пересекает прямую O, в точках А и В . | |
Построими окружности того же радиуса с центрами A и В . Пусть Ol — точка пересечения этих окружностей, причем точки О и Ol лежат по разные стороны от прямой а . | |
Проведем прямую . Пусть С — точка пересечения прямых и а . По построению (по третьему признаку). Отсюда . Тогда ОС — биссектриса равнобедренного треугольника АОВ , проведенная к основанию. Она также является медианой и высотой треугольника. Следовательно, а , то есть прямая — искомая. |
Отметим, что построенная прямая перпендикулярна отрезку АВ и проходит через его середину. Такую прямую называют серединным перпендикуляром к отрезку.
Пользуясь описанными построениями, несложно решить задачи на построение середины данного отрезка и на построение прямой, параллельной данной.
Для построения середины отрезка АВ достаточно провести две окружности радиуса АВ с центрами в точках А к В (рис. 172). Обозначив точки пересечения этих окружностей через и можно определить середину отрезка AB как точку пересечения прямых АВ и , после чего провести доказательство, аналогичное доказательству предыдущей задачи.
Для построения прямой, проходящей через данную точку О параллельно данной прямой а, достаточно провести через точку О прямую b , перпендикулярную а, и прямую с, перпендикулярную b (рис. 173). Тогда а || с по теореме о двух прямых, перпендикулярных третьей.
Таким образом, основными задачами на построение будем считать следующие:
- построение треугольника с данными сторонами;
- построение угла, равного данному неразвернутому углу;
- построение биссектрисы данного неразвернутого угла;
- построение прямой, проходящей через данную точку перпендикулярно данной прямой;
- построение серединного перпендикуляра к данному отрезку;
- построение середины данного отрезка;
- построение прямой, проходящей через данную точку параллельно данной прямой.
Если эти задачи применяются как вспомогательные при решение более сложных задач, соответствующие построения можно подробно не описывать.
Решение задач на построение
Решение задач на построение состоит из четырех основных этапов: анализ, построение, доказательство, исследование.
Общая схема решения задач на построение | ||
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Описанные и вписанные окружности
- Плоские и пространственные фигуры
- Взаимное расположение точек и прямых
- Сравнение и измерение отрезков и углов
- Решение треугольников
- Треугольники и окружность
- Площадь треугольника
- Соотношения между сторонами и углами произвольного треугольника
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Сколько прямых можно провести через две точки? Геометрия 7 класс.Скачать
Через две различные точки можно провести только одну окружность
Выберите верные утверждения и запишите в ответе их номера.
1) Через любые две различные точки плоскости можно провести не более одной окружности.
2) Если при пересечении двух данных прямых третьей внутренние накрест лежащие углы равны, то данные прямые параллельны.
3) Все углы прямоугольника равны.
Проверим каждое из утверждений.
1) Неверно, поскольку через две различные точки плоскости можно провести одну, две и более окружностей.
2) Верно, по признаку параллельных прямых.
3) Верно, все углы прямоугольника равны 90°.
Видео:Как искать точки на тригонометрической окружности.Скачать
Через две различные точки можно провести только одну окружность
В книге А.В.Погорелова [3] геометрия основана на следующих аксиомах.
1. Аксиомы принадлежности.
1.1 Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
1.2. Через любые две точки можно провести прямую, и только одну.
2. Аксиомы порядка.
2.1. Из трех точек на прямой одна и только одна лежит между двумя другими.
2.2. Прямая, лежащая в плоскости, разбивает эту плоскость на две полуплоскости. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то отрезок не пересекает прямую. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекает прямую.
3. Аксиомы меры для отрезков и углов.
3.1. Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
3.2. Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180 0 . Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
3.3. Каково бы ни было вещественное число d > 0, существует отрезок длины d .
4. Аксиома существования треугольника, равного данному.
4.1. Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости.
5. Аксиома параллельных
5.1. На плоскости через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.
6. Аксиомы стереометрии
6.1. Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.
6.2. Если две различные плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.
6.3. Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.
В курсе элементарной геометрии Д.И.Перепелкина [4] рассматриваются следующие аксиомы геометрии.
1. Аксиомы соединения.
1.1. Через любые две данные точки проходит одна и только одна прямая.
1.2. На каждой прямой имеется бесчисленное множество точек.
1.3. Существуют точки, не лежащие на одной прямой.
1.4. Через любые три данные точки, не лежащие на одной прямой, проходит одна и только одна плоскость.
1.5. На каждой плоскости имеется бесчисленное множество точек.
1.6. Если две точки данной прямой лежат на некоторой плоскости, то и все точки этой прямой лежат на той же плоскости.
1.7. Если две плоскости имеют общую точку, то они имеют и вторую общую точку.
1.8. Существуют точки, не лежащие на одной плоскости.
2. Аксиомы порядка.
2.1. Из трех точек одной прямой всегда одна и только одна лежит между двумя другими.
2.2. Если A и B – две данные точки, то на прямой AB существует как бесчисленное множество точек, лежащих между A и B , так и бесчисленное множество точек, для которых точка B лежит между точкой A и каждой из этих точек.
2.3. Всякая точка O , лежащая на прямой, разделяет остальные точки этой прямой на два класса так, что точка O лежит между любыми двумя точками различных классов, но не лежит между двумя точками одного класса.
2.4. Всякая прямая, лежащая в некоторой плоскости, делит эту плоскость на две выпуклые области.
3 . Аксиомы конгруэнтности.
3.1. Равенство отрезков и углов обладает свойствами рефлексивности, симметричности и транзитивности.
3.2. Пусть точка C лежит на прямой AB между точками A и B, а точка C’ на прямой A’B’ между точками A’ и B’. Если при этом AC=A’C’, BC=B’C’ , то AB=A’B’. Если при этом же условии AB=A’B’, AC=A’C’, то BC=B’C’.
3.3. Пусть луч l лежит между сторонами h, k угла hk , а луч l’ – между сторонами h’, k’ угла h’k’ . Если при этом hl = h’l’ и lk = l’k’, то и hk = h’k’. Если при этом же условии hk = h’k’ и hl = h’l’, то и kl = k’l’.
3.4. Пусть AB – некоторый отрезок и h’ – луч, выходящий из точки A’ ; на луче h’ существует одна и только одна такая точка B’ , что отрезок AB конгруэнтен отрезку A’B’.
3.5. Пусть hk – некоторый угол, h’ – луч, выходящий из точки O’ и a – полуплоскость, выходящая из луча h’ ; в полуплоскости a существует один и только один такой луч k’ , выходящий из точки O’ , что hk = h’k’.
3 .6. Если две стороны одного треугольника соответственно равны двум сторонам другого и углы обоих треугольников, заключенные между этими сторонами, равны, то и остальные углы этих треугольников равны.
4. Аксиомы окружности.
4.1. Если один конец отрезка лежит внутри окружности, а другой – вне окружности, то отрезок имеет с окружностью общую точку.
4.2. Если один конец некоторой дуги окружности лежит внутри другой окружности, а другой конец – вне окружности, то дуга окружности и вторая окружность имеют общую точку.
5. Аксиома параллельности.
5.1. Через точку, не лежащую на данной прямой, проходит не более одной прямой, параллельной данной.
6. Аксиома Архимеда.
6.1. Каковы бы ни были два данных отрезка, всегда найдется такое кратное меньшего отрезка, которое превосходит больший.
7. Аксиома Кантора.
7.1. Если дана безгранично убывающая последовательность вложенных отрезков, то существует такая точка, которая будет внутренней или конечной точкой каждого из этих отрезков.
В школьном учебнике геометрии Л.С.Атанасяна и др. используется следующая система аксиом геометрии.
1. Аксиомы взаимного расположения точек, прямых и плоскостей.
1.1. На каждой прямой и в каждой плоскости имеются точки.
1.2. Имеются по крайней мере три точки, не лежащие на одной прямой, и по крайней мере четыре точки, не лежащие в одной плоскости.
1.3. Через любые две точки проходит прямая, и притом только одна.
1.4. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
1.5. Если две точки прямой принадлежат плоскости, то и все точки прямой лежат в этой плоскости.
1.6. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
1.7. Из трех точек прямой одна и только одна лежит между двумя другими.
1.8. Каждая точка прямой разделяет ее на две части (два луча) так, что любые две точки одного и того же луча лежат по одну сторону от данной точки, а любые две точки разных лучей лежат по разные стороны от данной точки.
1.9. Каждая прямая, лежащая в плоскости, разделяет эту плоскость на две части (две полуплоскости) так, что любые две точки одной и той же полуплоскости лежат по одну сторону от данной прямой, а любые две точки разных полуплоскостей лежат по разные стороны от данной прямой.
1.10. Каждая плоскость разделяет пространство на две части (два полупространства) так, что две точки одного и того же полупространства лежат по одну сторону от данной плоскости, а любые две точки разных полупространств лежат по разные стороны от данной плоскости.
2. Аксиомы наложения и равенства.
Наложением называется отображение пространства на себя. Две фигуры называются равными если одна из них переходит в другую с помощью некоторого наложения.
2.1. Если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки.
2.2. На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
2.3. От любого луча в данную полуплоскость можно отложить угол, равный данному неразвернутому углу, и притом только один.
2.4. Два равных угла hk и h 1 k 1 , лежащие в плоскостях, являющихся границами полупространств P и P 1 можно совместить наложением так, что при этом совместятся полупространства P и P 1 , причем это можно сделать двумя способами: 1) так, что луч h совместится с лучом h 1 , а луч k – с лучом k 1 ; 2) так, что луч h совместится с лучом k 1 , а луч k – с лучом h 1.
2.5. Любая фигура равна самой себе.
2.6. Если фигура Ф равна фигуре Ф 1 , то фигура Ф 1 равна фигуре Ф .
2.7. Если фигура Ф 1 равна фигуре Ф 2 , а фигура Ф 2 равна фигуре Ф 3 , то фигура Ф 1 равна фигуре Ф 3.
3. Аксиомы измерения отрезков.
3. 1. При выбранной единице измерения отрезков длина каждого отрезка выражается положительным числом.
3.2. При выбранной единице измерения отрезков для любого положительного числа существует отрезок, длина которого выражается этим числом.
4. Аксиома параллельных.
4.1. В любой плоскости через точку, не лежащую на данной прямой этой плоскости, проходит только одна прямая, параллельная данной.
В школьном учебнике геометрии И.М.Смирновой, В.А.Смирнова [6] основными геометрическими фигурами считаются точки , прямыеи плоскости . Первые аксиомы относятся к понятию принадлежности.
1. Через любые две точки проходит единственная прямая.
2. Для любой прямой существуют точки, принадлежащие этой прямой и точки, ей не принадлежащие.
Одним из основных отношений взаимного расположения точек на прямой является отношение лежать между. Точки на прямой могут лежать между двумя данными точками на этой прямой или не лежать между ними. Если точка О лежит между точками А и В, то в этом случае говорят также, что точки А и В лежат на прямой по разные стороны от точки О. В противном случае говорят, что точки А и В лежат на прямой по одну сторону от точки О .
В качестве аксиом взаимного расположения точек на прямой принимаются следующие свойства.
3. Из трех точек на прямой только одна лежит между двумя другими.
4. Каждая точка на прямой разбивает эту прямую на две части так, что точки из разных частей лежат по разные стороны от данной точки, а точки из одной части лежат по одну сторону от данной точки .
Часть прямой, состоящая из двух данных точек и всех точек, лежащих между ними, называется отрезком. При этом сами данные точки называются концами отрезка.
Часть прямой, состоящая из данной точки и всех точек, лежащих от нее по одну сторону, называется полупрямой или лучом. При этом сама данная точка называется началом или вершинойлуча.
Одной из основных операций, которую можно производить с отрезками, является операция откладывания данного отрезка на данном луче от его вершины. Получающийся при этом отрезок называется равным исходному отрезку. Равенство отрезков АВ и А 1 В 1 записывается в виде АВ=А 1 В 1 . Оно означает, что если один из этих отрезков, например АВ, отложить на луче А 1 В 1 от точки А 1 , то отрезок АВ при этом совместится с отрезком А 1 В 1.
Если при откладывании отрезка АВ на луче А 1 В 1 от точки А 1 точка В переходит в точку, лежащую между точками А 1, В 1 , то говорят, что отрезок АВ меньше отрезка А 1 В 1 и обозначают АВ 1 В 1 . Говорят также, что отрезок А 1 В 1 больше отрезка АВ и обозначают А 1 В 1 >AB
Если на отрезке АВ между точками А и В взять какую-либо точку С, то образуется два новых отрезка АС и СВ. Отрезок АВ называется суммой отрезков АС и СВ и обозначается АВ = АС + СВ. Каждый из отрезков АС и СВ называется разностью отрезка АВ и другого отрезка, обозначается АС = АВ — СВ , СВ = АВ — АС . Чтобы сложить два произвольных отрезка АВ и CD , продолжим отрезок АВ за точку В и на этом продолжении отложим отрезок ВЕ, равный CD . Отрезок АЕ даст сумму отрезков АВ и CD , АЕ = АВ + CD . Аналогичным образом поступают для вычитания из большего отрезка меньшего.
Следующие свойства, относящиеся к понятию равенства отрезков, принимаются за аксиомы.
5. Каждый отрезок равен самому себе.
6. Если два отрезка равны третьему, то они равны между собой.
7. На любом луче от его начала можно отложить только один отрезок, равный данному.
8. Отрезки, полученные сложением или вычитанием соответственно равных отрезков, равны .
Используя операцию сложения отрезка с самим собой можно определить операцию умножения отрезка на натуральное число. А именно, положим для отрезка АВ 2 АВ = АВ + АВ ,3 АВ = 2АВ + АВ , . , nАВ = (n- 1 )АВ + АВ , . . Определим также операцию деления отрезка на натуральное число, или, что то же самое, операцию деления отрезка на n равных частей, считая AB : n отрезком, при умножении которого на n получается исходный отрезок АВ, т.е. n(AB : n ) = AB .
В качестве аксиомы принимается следующее свойство.
9. Любой отрезок можно разделить на n равных частей, n = 2,3, . .
Следующее свойство принимается в качестве аксиомы взаимного расположения точек на плоскости относительно данной прямой.
10. Каждая прямая на плоскостиразбивает эту плоскость на две части, для точек которых говорят, что они лежат по разные стороны от данной прямой. При этом, если две точки, принадлежат разным частям плоскости относительно данной прямой, то отрезок, соединяющий эти точки, пересекается с прямой. Если две точки принадлежат одной части, то отрезок, соединяющий эти точки, не пересекается с прямой .
Часть плоскости, состоящую из точек данной прямой и точек, лежащих по одну сторону от этой прямой, называется полуплоскостью .
Два луча с общей вершиной так же разбивают плоскость на две части. Если лучи не лежат на одной прямой, то меньшая из этих частей является общей частью двух полуплоскостей, определяемых данными лучами.
Фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими лучами, называется углом. Общая вершина называется вершиной угла, а сами лучи — сторонами угла. Точки угла, не лежащие на его сторонах, называются внутренними. Лучи, исходящие из вешины данного угла и проходящие через внутренние точки угла, называются внутренними.
Одной из основных операций, которую можно производить с углами, является операция откладывания данного угла в ту или другую сторону от данного луча. Получающийся при этом угол называется равным исходному углу . Равенство углов АОВ и А 1 О 1 В 1 записывается в виде АОВ = А 1 О 1 В 1 . Оно означает, что если один из этих углов, например АОВ, отложить от луча О 1 А 1 в сторону, определяемую лучом О 1 В 1 , то угол АОВ при этом совместится с углом А 1 О 1 В 1.
Если при откладывании угла АОВ на луче А 1 О 1 В 1 от луча О 1 А 1 луч ОВ переходит в луч, лежащий внутри угла А 1 О 1 В 1 , то говорят, что угол АОВ меньше угла А 1 О 1 В 1 и обозначают АOВ А 1 O 1 В 1 . Говорят также, что угол А 1 О 1 В 1 больше угла АОВ и обозначают А 1 O 1 В 1 >AOB.
Если внутри угла АОВ провести луч ОС, то образуется два новых угла АОС и СОВ. Угол АОВ называется суммой углов АОС и СОВ и обозначается АОВ = АOС + СOВ . Каждый из углов АОС и СОВ называется разностью угла АОВ и другого угла, обозначается АOС = АOВ — СOВ , СOВ = АOВ — АOС . Чтобы сложить два угла, например АОВ и CО 1 D , отложим угол CO 1D от луча ОВ так, чтобы точки В и D находились по разные стороны от прямой ОВ. Обозначим ОЕ луч, в который перейдет луч О 1 D. Тогда угол АОЕ даст сумму углов АОВ и CО 1 D, АOЕ = АOВ + CO 1 D. Аналогичным образом поступают для вычитания из большего угла меньшего.
Аксиомами, относящимися к понятию равенства углов являются следующие:
11. Каждый угол равен самому себе.
12. Если два угла равны третьему, то они равны между собой.
13. От любого луча на плоскостив заданную сторону можно отложить только один угол равный данному.
14. Углы, полученные сложением или вычитанием соответственно равных углов, равны.
15. Все развернутые углы равны .
Используя операцию сложения угла с самим собой можно определить операцию умножения угла на натуральное число и деления угла на n равных частей. Для угла АОВ углом АОВ :n считается такой угол, при при умножении которого на n получается исходный угол АОВ, т.е.
n ( AОB :n) = AОB .
В качестве аксиомы принимается следующее свойство.
16. Любой угол можно разделить на n равных частей, n = 2,3, .
Два треугольника назовем равными, если стороны одного соответственно равны сторонам другого и углы, заключенные между соответственно равными сторонами, равны.
В качестве аксиомы принимается следующее свойство.
17. Каковы бы ни были треугольник и луч на плоскости, существует треугольник , равный данному, у которого первая вершина совпадает с вершиной луча, вторая – лежит на луче, а третья расположена в заданной полуплоскости относительно луча .
Аксиома параллельных формулируется в виде:
18. Через точку, не принадлежащую данной прямой, проходит не более одной прямой, параллельной данной.
Завершает аксиомы планиметрии один из вариантов аксиомы непрерывности.
19. Соответствие, при котором точкам координатной прямой сопоставляются их координаты, является взаимно однозначным соответствием между точками координатной прямой и действительными числами.
Отметим, что приведенная система аксиом является избыточной в том смысле, что некоторые последующие аксиомы перекрывают предыдущие. Например, из аксиомы об откладывании треугольника равного данному и признаков равенства треугольников следует, что все развернутые углы равны. Тем не менее авторы предпочли сформулировать аксиому о равенстве развернутых углов отдельно, поскольку она используется в самой первой теореме о равенстве вертикальных углов. Кроме этого, на ее основе строится процесс измерения величин углов.
То, что отрезок можно разделить на n равных частей является следствием аксиомы непрерывности или аксиомы параллельности. Авторы предпочли принять это свойство в качестве самостоятельной аксиомы, поскольку оно существенным образом используется при измерении длин отрезков, различных доказательствах и построениях.
Литература.
1. Энциклопедия элементарной математики, т. 4 Геометрия. М. 1963.
2. А.Д.Александров. Основания геометрии. М.: Наука, 1987.
3. А.В.Погорелов. Геометрия. М.: Наука, 1983.
4. Д.И.Перепелкин. Курс элементарной геометрии, ч II. М.: 1949.
5. Л.С.Атанасян и др. Геометрия 10-11. Учебник для 10-11 классов средней школы. М.: Просвещение, 1992.
6. И.М.Смирнова, В.А.Смирнов. Геометрия. Учебник для 7-9 классов общеобразовательных учреждений. М.: Просвещение, 2001.
📸 Видео
№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать
Отрезки касательных из одной точки до точек касания окружности равны | Окружность | ГеометрияСкачать
Вписанная и описанная окружность - от bezbotvyСкачать
Две окружности на плоскости. Математика. 6 класс.Скачать
На окружности по разные стороны от диаметра AB ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
Математика без Ху!ни. Уравнение плоскости.Скачать
Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать
Построение окружности по трём точкам.Скачать
Длина окружности. Площадь круга - математика 6 классСкачать
✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать
Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать
Задачи региона ВсОШ на степень точкиСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Отрезок, луч, прямаяСкачать
Через любую точку, лежащую вне окружности ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать