Ключевые слова: прямая, окружность, секущая, касательная, угол между хордами, касательными и секущими
![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ![]() | ![]() | ![]() | ![]() |
| Угол между пересекающимися хордами $$gamma =frac$$ | Угол между секущими, пересекающимися вне окружности $$gamma =frac$$ | Угол между касательной и секущей $$gamma =frac$$ | Угол между касательными $$gamma =frac= pi — alpha$$ | Угол между касательной и хордой $$gamma =frac$$ |
Соотношения между прямыми и отрезками окружности
![]() | ![]() | ![]() | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
Видео:Уравнение окружности (1)Скачать

Отрезки и прямые, связанные с окружностью
| Фигура | Рисунок | Определение и свойства | |||||||||||||||||||||||||||||||
| Окружность | ![]() | ||||||||||||||||||||||||||||||||
| Круг | ![]() | ||||||||||||||||||||||||||||||||
| Радиус | ![]() | ||||||||||||||||||||||||||||||||
| Хорда | ![]() | ||||||||||||||||||||||||||||||||
| Диаметр | ![]() | ||||||||||||||||||||||||||||||||
| Касательная | ![]() | ||||||||||||||||||||||||||||||||
| Секущая | ![]() | ||||||||||||||||||||||||||||||||
| Окружность |
![]() |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Свойства хорд и дуг окружности
| Фигура | Рисунок | Свойство |
| Диаметр, перпендикулярный к хорде | ![]() | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. |
| Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
| Равные хорды | ![]() | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. |
| Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
| Две хорды разной длины | ![]() | Большая из двух хорд расположена ближе к центру окружности. |
| Равные дуги | ![]() | У равных дуг равны и хорды. |
| Параллельные хорды | ![]() | Дуги, заключённые между параллельными хордами, равны. |
| Диаметр, перпендикулярный к хорде |
![]() |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Большая из двух хорд расположена ближе к центру окружности.

У равных дуг равны и хорды.

Дуги, заключённые между параллельными хордами, равны.
Видео:№145. Отрезок МК — диаметр окружности с центром О, а МР и РК — равные хорды этой окружностиСкачать

Теоремы о длинах хорд, касательных и секущих
| Фигура | Рисунок | Теорема | |||||||||||||||||||||
| Пересекающиеся хорды | ![]() | ||||||||||||||||||||||
| Касательные, проведённые к окружности из одной точки | ![]() | ||||||||||||||||||||||
| Касательная и секущая, проведённые к окружности из одной точки | ![]() | ||||||||||||||||||||||
| Секущие, проведённые из одной точки вне круга | ![]() | ||||||||||||||||||||||
| Пересекающиеся хорды | ||||
![]() | ||||
| Касательные, проведённые к окружности из одной точки | ||||
![]() | ||||
| Касательная и секущая, проведённые к окружности из одной точки | ||||
![]() | ||||
| Секущие, проведённые из одной точки вне круга | ||||
![]() | ||||
| Пересекающиеся хорды |
![]() |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Видео:На отрезке AB выбрана точка C так, что AC=75 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Видео:Длина окружности. Математика 6 класс.Скачать

Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
Видео:Окружность. 7 класс.Скачать

Отрезок
Видео:Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CDСкачать

Определение отрезка
Определение 1. Отрезок (или отрезок прямой )− это часть прямой, ограниченная двумя точками.
Определение 2. Отрезок − это множество, состоящая из двух различных точек данной прямой и всех точек, лежащих между ними.
Точки, ограничивающие отрезки называются концами отрезка, а точки, которые находятся между концами отрезка называются внутренними точками.
![]() |
На рисунке 1 отрезок выделен красным цветом. Точки A и B концы отрезка, а точки между ними − внутренние точки.
Видео:№645. Из концов диаметра АВ данной окружности проведены перпендикуляры АА1 и ВВ1 к касательнойСкачать

Обозначение отрезков
Отрезки обозначаются с помощью его конечных точек. Отрезок на рисунке 1 обозначается так: AB или BA. Порядок следования имен конечных букв не имеет значения.
Видео:Точка, прямая и отрезок. 1 часть. 7 класс.Скачать

Сравнение отрезков
Для сравнения отрезков нужно:
- Взять любую прямую и отметить на ней какую-нибудь точку.
- Отложить на прямой оба отрезка из отмеченной точки на прямой на одну и ту же сторону.
Если два других конца совместяться, то отрезки равны. Если же конец одного отрезка находится внутри другого, то длина первого отрезка меньше второго.
![]() |
Пусть даны два отрезка AB и CD (Рис.2). Требуется сравнить эти отрезки, т.е. определить какой из них больше. Отложим эти отрезки на прямой a. Как видим, точка D находится внутри отрезка AB. Значит отрезок CD меньше отрезка AB. Это обозначается так: CD Определение 3. Точка отрезка,делящая его на два равных отрезка называется серединой отрезка.
![]() |
На рисунке 3 ( small M ) является серединой отрезка ( small AB ) поскольку ( small AM = MB ).
Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Длина отрезка
Для определения длины отрезка его нужно сравнить с другим отрезком, принятым за единицу измерения.
В качестве единицы измерения можно взять, например, сантиметр. В этом случае для определения длины отрезка узнают, сколько раз в данном отрезке укладывается сантиметр. Этот показатель и является длиной отрезка выраженная в сантиметрах. Если длина отрезка AB равна трем сантиметрам, то пишут AB=3см.
Если отрезок, принятый за единицу измерения не укладывается целое число раз в измеряемом отрезке, то его обычно делят на 10 равных частей и определяют сколько раз одна такая часть укладывается в остатке. Одна десятая часть сантиметра называется миллиметром. В итоге получаем длину отрезка в сантиметрах и миллиметрах.
![]() |
На Рис.4 1см укладывается в отрезке AB 4 раза и в остатке укладывается ровно 8 одну десятую часть сантиметра. Поэтому можно писать: AB=4см 8мм или AB=4.8см.
Видео:№143. Какие из отрезков, изображенных на рисунке 90, являются: а) хордами окружности; б) диаметрамиСкачать

Направленный отрезок
Если для отрезка определить направление, то такой отрезок называется направленным отрезком. Направленный отрезок имеет начальную точку и конечную точку. В конечной точке направленного отрезка рисуют стрелку (Рис.5)
![]() |
Для обозначения направленных отрезков сначала пишется начальная точка, а затем конечная точка. На рисунке 2 верхний направленный отрезок обозначают так: ( small overrightarrow ) а нижний отрезок так: ( small overrightarrow ) Направленный отрезок называют вектором.
💡 Видео
№641. Отрезки АВ и АС являются отрезками касательных к окружности с центром О, проведенными изСкачать

ДЕКАРТОВЫ КООРДИНАТЫ. Контрольная № 3 Геометрия 9 класс.Скачать

Отрезок, луч, прямаяСкачать

Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№146. Отрезки АВ и CD — диаметры окружности с центром О. Найдите периметр треугольника AOD, еслиСкачать

11 класс, 41 урок, Две теоремы об отрезках, связанных с окружностьюСкачать

Длина окружности. Площадь круга. 6 класс.Скачать












Отрезки и прямые, связанные с окружностью








































