Биссектрисаугла — это луч с началом в вершине угла, делящий угол на две равные части.
Биссектриса угла (вместе с ее продолжением) есть геометрическое место точек, равноудаленных от сторон угла (или их продолжений).
Биссектриса угла треугольника — это отрезок биссектрисы этого угла, соединяющий эту вершину с точкой на противолежащей стороне.
Любая из трех биссектрисс внутренних углов треугольника называется биссектрисой треугольника.
Биссектриса угла треугольника может обозначать одно из двух: луч — биссектриса этого угла или отрезок биссектрисы этого угла до ее пересечения со стороной треугольника.
Свойства биссектрис
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.
Биссектрисы внутреннего и внешнего углов перпендикулярны.
Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то $$frac= frac$$.
Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центродной из трех вневписанных окружностей этого треугольника.
Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
Формулы
Обозначения: la — биссектриса, проведенная к стороне a, a,b,c — стороны треугольника против вершин A,B,C соответственно, al,a2 — отрезки, на которые биссектриса lc делит сторону c, $$alpha,beta,gamma$$ — внутренние углы треугольника при вершинах a, b, c соответственно, ha — высота треугольника, опущенная на сторону a.
Видео:8 класс, 35 урок, Свойства биссектрисы углаСкачать
Определение и свойства биссектрисы угла треугольника
В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.
Видео:Свойство биссектрисы треугольника с доказательствомСкачать
Определение биссектрисы угла треугольника
Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.
Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.
Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.
Внешней называется биссектриса угла, смежного с внутренним углом треугольника.
Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать
Свойства биссектрисы треугольника
Свойство 1 (теорема о биссектрисе)
Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):
Свойство 2
Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.
Свойство 3
Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).
Свойство 4
Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):
BD 2 = AB ⋅ BC – AD ⋅ DC
Свойство 5
Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.
CD – внутренняя биссектриса ∠ACB;
CE – биссектриса угла, смежного с ∠ACB;
∠DCE равен 90°, т.е. биссектрисы CD и CE перпендикулярны.
Видео:Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Пример задачи
Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.
Решение Нарисуем чертеж согласно условиям задачи.
Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов). BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100. Следовательно, BC = 10 см.
Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):
Избавляемся от дробей и решаем получившееся уравнение: 8a = 60 – 6a 14a = 60 a ≈ 4,29
Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.
Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4: AD 2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.
2. Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон ()
3. Точки биссектрисы угла треугольника равноудалены от сторон этого угла.
4. Биссектрисы внутренних углов треугольника пересекаются в одной точке — центре вписанной в этот треугольник окружности.
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Некоторые формулы, связанные с биссектрисой треугольника
(доказательство формулы – здесь) , где — длина биссектрисы, проведённой к стороне , — стороны треугольника против вершин соответственно, — длины отрезков, на которые биссектриса делит сторону ,
Приглашаю посмотреть видеоурок, в котором демонстрируется применение всех указанных выше свойств биссектрисы.
Задачи, рассматриваемые в видеоролике: 1.В треугольнике АВС со сторонами АВ=2 см, ВС=3 см, АС=3 см проведена биссектриса ВМ. Найти длины отрезков АМ и МС 2. Биссектриса внутреннего угла при вершине А и биссектриса внешнего угла при вершине С треугольника АВС пересекаются в точке М. Найдите угол BMC, если угол В равен 40, угол С – 80 градусов 3. Найти радиус окружности, вписанной в треугольник, считая стороны квадратных клеток равными 1
Возможно, вам будет интересен и этот небольшой видеоурок, где применяется одно из свойств биссектрисы
Чтобы не потерять страничку, вы можете сохранить ее у себя: