Пример вычислений теорема Пифагора
- Соотношения в прямоугольном треугольнике
- Обратные тригонометрические функции арксинус (arcsin), арккосинус (arccos), арктангенс (arctg) и арккотангенс (arcctg)
- Сумма углов треугольника
- Теорема синусов
- Теорема косинусов
- Площадь треугольника
- Площадь круга
- Длина дуги окружности
- Перевод градусов в угловые градусы минуты и секунды
- Перевод градусов в угловые градусы минуты и секунды
- Перевод градусов в радианы
- Перевод радианов в градусы
- Определение наклона линии в градусах
- Определение уклона линии в долях, процентах и промилле
- Обратная тригонометрическая функция: Арктангенс (arctg)
- Определение
- График арктангенса
- Свойства арктангенса
- Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса
- Значения арксинуса, арккосинуса, арктангенса и арккотангенса
- Основные значения arcsin, arccos, arctg и arctg
- Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса
- Нахождение значения arcsin, arccos, arctg и arcctg
- 📽️ Видео
Соотношения в прямоугольном треугольнике
Пример вычислений соотношения в прямоугольном треугольнике
Обратные тригонометрические функции арксинус (arcsin), арккосинус (arccos), арктангенс (arctg) и арккотангенс (arcctg)
— арксинус (arcsin) возвращает угол по его синусу
— арккосинус (arccos) возвращает угол по его косинусу
— арктангенс (arctg) возвращает угол по его тангенсу
— арккотангенс (arcctg) возвращает угол по его арктангенсу
Пример вычислений обратные тригонометрические функции
Сумма углов треугольника
Сумма углов в треугольнике равна 180 градусам
Теорема синусов
Для любого треугольника соблюдается выражение
Пример вычислений теорема синусов
Теорема косинусов
Квадрат любой стороны треугольника, равен сумме квадратов двух других его сторон, минус удвоенное произведение этих сторон на косинус угла между ними
Пример вычислений теорема косинусов
Площадь треугольника
Площадь треугольника можно определить по формулам
также удобно использовать формулу Герона ,
где p-полупериметр треугольника
Пример вычислений площадь треугольника
или по формуле Герона
Площадь круга
Длина дуги окружности
Длина дуги окружности вычисляется по формулам
если угол задан в угловых градусах минутах и секундах
если угол задан в радианах
Пример вычислений длина дуги окружности
угол задан в угловых градусах минутах и секундах
угол задан в радианах
Перевод градусов в угловые градусы минуты и секунды
Перевод угловых градусов минут и секунд в градусы выполняется согласно выражения
Пример вычислений
перевести в градусы угол, который задан в угловых градусах минутах и секундах
Перевод градусов в угловые градусы минуты и секунды
Перевод градусов в угловые градусы минуты и секунды выполняется согласно выражения
Пример вычислений
перевести в угловые градусы минуты и секунды угол, который задан в градусах
Перевод градусов в радианы
Перевод градусов в радианы выполняется по формуле
Пример вычислений
перевести в радианы угол, который задан в угловых градусах минутах и секундах
Перевод радианов в градусы
Перевод радианов в градусы выполняется по формуле
Пример вычислений
перевести в угловые градусы минуты и секунды угол, который задан в радианах
Определение наклона линии в градусах
Определение наклона линии в градусах выполняется с использованием соотношений в прямоугольном треугольнике
Пример вычислений
Определить наклон пандуса длиной 14м и высотой 3,5м
Определение уклона линии в долях, процентах и промилле
При инженерно-строительных работах, наклон линии задают не градусом наклона, а тангенсом этого градуса — безразмерной величиной, которая называется уклоном. Уклон может выражаться относительным числом, в процентах (сотые доли числа) и промилле (тысячные доли числа)
Пример вычислений
Определить уклон отмостки длиной 2,5м и высотой 0,30м
Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать
Обратная тригонометрическая функция: Арктангенс (arctg)
Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать
Определение
Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.
Арктангенс x определяется как функция, обратная к тангенсу x , где x – любое число (x∈ℝ).
Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y :
Примечание: tg -1 x означает обратный тангенс, а не тангенс в степени -1.
Например:
arctg 1 = tg -1 1 = 45° = π/4 рад
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
График арктангенса
Функция арктангенса пишется как y = arctg (x) . График в общем виде выглядит следующим образом:
Видео:8 класс, 29 урок, Синус, косинус и тангенс острого угла прямоугольного треугольникаСкачать
Свойства арктангенса
Ниже в табличном виде представлены основные свойства арктангенса с формулами.
Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать
Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса
В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.
Видео:Синус, косинус, тангенс ТУПОГО угла | Твой самый халявний балл на ОГЭ 2023!Скачать
Значения арксинуса, арккосинуса, арктангенса и арккотангенса
Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».
Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.
Для четкого понимания рассмотрим пример.
Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos ( 1 2 ) = π 3 .
Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °
Видео:ТРИГОНОМЕТРИЯ с нуля — Синус, косинус, тангенс и котангенс острого углаСкачать
Основные значения arcsin, arccos, arctg и arctg
Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.
Таблица синусов основных углов предлагает такие результаты значений углов:
sin ( — π 2 ) = — 1 , sin ( — π 3 ) = — 3 2 , sin ( — π 4 ) = — 2 2 , sin ( — π 6 ) = — 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1
Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от — 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.
Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.
α | — 1 | — 3 2 | — 2 2 | — 1 2 | 0 | 1 2 | 2 2 | 3 2 | |
a r c sin α к а к у г о л | — π 2 | — π 3 | — π 4 | — π 6 | 0 | π 6 | π 4 | π 3 | |
в г р а д у с а х | — 90 ° | — 60 ° | — 45 ° | — 30 ° | 0 ° | 30 ° | 45 ° | 60 ° | |
a r c sin α к а к ч и с л о | — π 2 | — π 3 | — π 4 | — π 6 | 0 | π 6 | π 4 | π 3 |
Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:
cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = — 1 2 , cos 3 π 4 = — 2 2 , cos 5 π 6 = — 3 2 , cos π = — 1
Следуя из таблицы, находим значения арккосинуса:
a r c cos ( — 1 ) = π , arccos ( — 3 2 ) = 5 π 6 , arcocos ( — 2 2 ) = 3 π 4 , arccos — 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0
α | — 1 | — 3 2 | — 2 2 | — 1 2 | 0 | 1 2 | 2 2 | 3 2 | 1 | |
a r c cos α к а к у г о л | π | 5 π 6 | 3 π 4 | 2 π 3 | π 2 | π 3 | π 4 | π 6 | 0 | |
в г р а д у с а х | 180 ° | 150 ° | 135 ° | 120 ° | 90 ° | 60 ° | 45 ° | 30 ° | 0 ° | |
a r c cos α к а к ч и с л о | π | 5 π 6 | 3 π 4 | 2 π 3 | π 2 | π 3 | π 4 | π 6 | 0 |
Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.
α | — 3 | — 1 | — 3 3 | 0 | 3 3 | 1 | 3 | |
a r c t g a к а к у г о л | в р а д и а н а х | — π 3 | — π 4 | — π 6 | 0 | π 6 | π 4 | π 3 |
в г р а д у с а х | — 60 ° | — 45 ° | — 30 ° | 0 ° | 30 ° | 45 ° | 60 ° | |
a r c t g a к а к ч и с л о | — π 3 | — π 4 | — π 6 | 0 | π 6 | π 4 | π 3 |
Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса
a r c sin , a r c cos , a r c t g и a r c c t g
Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.
Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin ( — α ) = — a r c sin α , a r c cos ( — α ) = π — a r c cos α , a r c t g ( — α ) = — a r c t g α , a r c c t g ( — α ) = π — a r c c t g α .
Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.
Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.
Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.
Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.
Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .
Видео:Геометрия 8. Урок 11- Синус, Косинус, Тангенс и Котангенс угла в прямоугольном треугольнике.Скачать
Нахождение значения arcsin, arccos, arctg и arcctg
Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).
При известном a r c sin α = — π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:
a r c cos α = π 2 − a r c sin α = π 2 − ( − π 12 ) = 7 π 12 .
Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.
Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.
При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.
Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.
📽️ Видео
Синус, косинус и тангенс Решение задач по геометрииСкачать
Что такое синус, косинус и тангенс угла в прямоугольном треугольнике. Часть 1Скачать
Тригонометрия: Как запомнить? + ПОЛУЧИ ПОДАРОК от Ольги АлександровныСкачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Синус, Косинус, Тангенс, Котангенс // Подготовка к ЕГЭ по МатематикеСкачать
Урок СИНУС, КОСИНУС И ТАНГЕНС ОСТРОГО УГЛА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКАСкачать
ОГЭ математика ФИГУРЫ НА РЕШЕТКЕ 19#1🔴Скачать
№591. Найдите синус, косинус и тангенс углов А и В треугольника ABC с прямым углом ССкачать
Найди тангенс углаСкачать
Найдите тангенс угла B треугольника ABС | ОГЭ 2017 | ЗАДАНИЕ 12 | ШКОЛА ПИФАГОРАСкачать
Синус, косинус произвольного угла. 9 класс.Скачать
Геометрия 9 класс (Урок№12 - Синус, косинус, тангенс, котангенс угла.)Скачать