С помощю этого онлайн калькулятора можно найти арксинус и арккосинус от числа. Результат можно видеть как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать
Арксинус и арккосинус − теория, примеры и решения
Функция арксинус и ее график
Как известно, функция синус определена в интервале [−∞;+∞] и не является монотонной функцией (т.е. не является возрастающей или убывающей во всей области определения функции (Рис.1) (подробнее о функции синус смотрите на странице Синус и косинус. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.
Однако, функцию синус можно разделить на интервалы, где она монотонна. Эти интервалы:
,,, и т.д. |
По теореме об обратной функции, на каждом из указанных отрезков функция sin x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию обозначают x=arcsin y. Поменяв местами x и y, получим:
y=arcsin x. | (1) |
Функция (1) − это функция, обратная к функции
. |
График функции арксинус можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.2).
Свойства функции арксинус.
- Область определения функции: .
- Область значений функции: .
- Функция является нечетной: .
- Функция возрастает.
- Функция непрерывна.
Решим тригонометрическое уравнение
При |a|>1 это уравнение не имеет решения, т.к. не существует такое число x, при котором sin x>1 (см. график функции синус (Рис.1). При |a|≤1, в отрезке (дуга DAB) уравнение (2) имеет одно решение (см. Рис.3):
. |
В отрезке (дуга DCB) функция синус убывает и принимает значения от 1 до −1. Следовательно в этом отрезке уравнение (2) также имеет решение:
. |
. |
, |
, |
. |
Таким образом уравнение (3) имеет два решения в отрезке :
которые совпадают при |a|=1.
Поскольку функция синус периодичная с основным периодом 2π, имеем
Тогда получим решение (2) в виде
, | (3) |
. | (4) |
Решения (3) и (4) удобно представить одним уравнением:
. | (5) |
Действительно. При четных k (k=2n) из уравнения (5) получают все решения, представленные уравнением (3), а при нечетных k (k=2n+1) − все решения, представленные уравнением (4).
При a=1, arcsin a и π−arcsin a совпадают (т.к. ), следовательно решение уравнения sin t=1 имеет вид:
. |
При |a|=−1, из (3) и (4) следует:
, | (6) |
. | (7) |
Но поворот эквивалентно повороту . То есть уравнения (6) и (7) эквивалентны. Тогда решение уравнения sin t=−1 запишем в виде:
. |
При |a|=0, из (3) и (4) имеем следующее решение уравнения sin t=0:
. |
Пример 1. Решить тригонометрическое уравнение:
. |
Решение. Воспользуемся формулой (5):
, |
. |
Пример 2. Решить тригонометрическое уравнение:
. |
Решение. Воспользуемся формулой (5):
, |
. |
Функция арккосинус и ее график
Как известно, функция косинус определена в интервале [−∞;+∞] и не является монотонной функцией (Рис.4) (подробнее о функции косинус смотрите на странице Синус и косинус. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.
Однако, функцию косинус можно разделить на интервалы, где она монотонна. Эти интервалы:
,,, и т.д. |
По теореме об обратной функции, на каждом из указанных отрезков функция cos x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию оброзначают x=arccos y. Поменяв местами x и y, получим:
y=arccos x. | (8) |
Функция (8) − это функция, обратная к функции
. |
График функции арксинус можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.5).
Свойства функции арксинус.
- Область определения функции: .
- Область значений функции: .
- Функция не является ни четной ни нечетной (так как функция не симметрична ни относительно начала координит, ни относительно оси Y).
- Функция убывает.
- Функция непрерывна.
Решим тригонометрическое уравнение
При |a|>1 это уравнение не имеет решения, т.к. не существует такое число x, при котором cos x>1 (см. график функции косинус (Рис.4). При |a|≤1, в отрезке [0; π] (дуга ABC) уравнение (9) имеет одно решение t1=arccos a. В отрезке [−π; 0] (дуга CDA) уравнение (9) имеет одно решение t2=−arccos a(см. Рис.6):
Таким образом, в интервале [−π; π] уравнение (9) имеет два решения y=± arccos a, которые совпадают при a=1.
Поскольку функция косинус периодичная с основным периодом 2π:
то общее решение (9) имеет следующий вид:
(10) |
При a=1, числа arccos a и −arccos a совпадают (они равны нулю), тогда решение уравнения cos t=1 можно записать так:
(11) |
(12) |
Решение тригонометрического уравнения cos t=0 можно записать одним уравнением:
Пример 1. Решить тригонометрическое уравнение:
. |
Решение. Воcпользуемся формулой (10):
. |
Так как , то
. |
Пример 2. Решить следующее тригонометрическое уравнение:
. |
Решение. Используя формулу (10), имеем
. |
Так как (), то
. |
Пример 3. Решить следующее тригонометрическое уравнение:
. |
Решение. Используя формулу (10), имеем
. |
С помощью онлайн калькулятора вычисляем : . Тогда решение можно записать так:
Видео:Тригонометрическая окружность. Как выучить?Скачать
Обратная тригонометрическая функция: Арксинус (arcsin)
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Определение
Арксинус (arcsin) – это обратная тригонометрическая функция.
Арксинус x определяется как функция, обратная к синусу x , при -1≤x≤1.
Если синус угла у равен х (sin y = x), значит арксинус x равняется y :
Примечание: sin -1 x означает обратный синус, а не синус в степени -1.
Например:
arcsin 1 = sin -1 1 = 90° (π/2 рад)
Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
График арксинуса
Функция арксинуса пишется как y = arcsin (x) . График в общем виде выглядит следующим образом ( -1≤x≤1 , -π/2≤y≤π/2 ):
Видео:Отбор корней по окружностиСкачать
Свойства арксинуса
Ниже в табличном виде представлены основные свойства арксинуса с формулами.
Видео:Занятие 4. Арксинус и арккосинус. Основы тригонометрииСкачать
Арксинус
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы познакомимся с понятием арксинуса. Рассмотрим подробно функции у = sint на периоде и сформулируем прямую и обратную задачу для этой функции. Дадим определение для арксинуса как ответа для тригонометрического уравнения sint = a. Покажем нахождение арксинуса на числовой окружности. Докажем важное свойство арксинуса – равенство арксинуса от а и от минус а. Далее рассмотрим типовые задачи на вычисление арксинуса и другие задачи с использованием его свойств. А также докажем формулу, связывающую арксинус и арккосинус.
Уважаемые пользователи, на 13 минуте на доске в условии появляется описка. В примере б) вместо -0,8 следует писать -0,6. В ближайшее время видео будет исправлено.
🌟 Видео
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Отбор корней по окружностиСкачать
14 АрксинусСкачать
Что такое Арксинус, Арккосинус, Арктангенс и Арккотангес?Скачать
Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать
Вычисление аркфункцийСкачать
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020Скачать
Как отбирать корни с помощью числовой окружности? Тригонометрические уравнения Часть 6 из 6Скачать
Алгебра 10 класс. 18 октября. Что такое arccos арккосинусСкачать
Три способа отбора корней в задании 13 ЕГЭ профильСкачать
Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать
Как найти значения аркфункций? (Перечень, ДВИ)Скачать
Корень из 3 графически.2 СПОСОБ.Скачать