Arctg 2 на окружности

Арктангенс и арккотангенс. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти арксинус и арккосинус от числа. Результат можно видеть как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружностиСкачать

Алгебра 10 класс. 2 октября. Тангенс и котангенс на окружности

Арктангенс и арккотангенс − теория, примеры и решения

Функция арктангенс и ее график

Функция тангенс определена в интервале [−∞;+∞] кроме точек Arctg 2 на окружности Arctg 2 на окружностиArctg 2 на окружности, . и не является монотонной функцией (т.е. не является возрастающей или убывающей во всей области определения функции (Рис.1) (подробнее о функции тангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.

Arctg 2 на окружности

Однако, функцию тангенс можно разделить на интервалы, где она монотонна. Эти интервалы:

Arctg 2 на окружности, Arctg 2 на окружности, Arctg 2 на окружности, Arctg 2 на окружностии т.д.

По теореме об обратной функции, на каждом из указанных отрезков функция tg x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке Arctg 2 на окружности. Обратную функцию обозначают x=arctg y. Поменяв местами x и y, получим:

y=arctg x.(1)

Функция (1) − это функция, обратная к функции

Arctg 2 на окружности.

График функции арктангенс можно получить из графика функции Arctg 2 на окружностис помощью преобразования симметрии относительно прямой y=x (Рис.2).

Arctg 2 на окружности

Свойства функции арктангенс.

  1. Область определения функции: Arctg 2 на окружности.
  2. Область значений функции: Arctg 2 на окружности.
  3. Функция является нечетной: Arctg 2 на окружности.
  4. Функция возрастает.
  5. Функция непрерывна.

Решим тригонометрическое уравнение

В интервале Arctg 2 на окружностидля уравнения (2) существует одно t, для которого tg t=a. Это решение

Следовательно в интервале Arctg 2 на окружностиуравнение (2) имеет один корень. Так как тангенс периодичная функция с основным периодом π, то все корни уравнения (2) отличаются на πn (n∈Z), т.е.

Arctg 2 на окружности.(3)

Решение уравнения (2) представлен на Рис.3:

Arctg 2 на окружности

Так как tg t − это ординат точки пересечения прямой OMt1 c прямым x=1, то для любого a на линии тангенса есть только одна точка T(1; a). Прямая OTt пересекается с окружностью с радиусом 1 в двух точках: Arctg 2 на окружности. Но только точка Arctg 2 на окружностисоответствует интервалу Arctg 2 на окружности, которое соответствует решению Arctg 2 на окружности.

Пример 1. Решить тригонометрическое уравнение:

Arctg 2 на окружности.

Решение. Воспользуемся формулой (3):

Arctg 2 на окружности,
Arctg 2 на окружности.

Пример 2. Решить тригонометрическое уравнение:

Arctg 2 на окружности.

Решение. Воспользуемся формулой (3):

Arctg 2 на окружности.

Используя онлайн калькулятор получим:

Arctg 2 на окружности.

Функция арккотангенс и ее график

Как известно, функция котангенс определена в интервале [−∞;+∞] кроме точек -2π, —π 0, π, 2π. и не является монотонной функцией (Рис.4) (подробнее о функции котангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.

Arctg 2 на окружности

Однако, функцию кокотангенс можно разделить на интервалы, где она монотонна. Эти интервалы:

Arctg 2 на окружностиArctg 2 на окружности

По теореме об обратной функции, на каждом из указанных интервалов функция ctg x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке Arctg 2 на окружности. Обратную функцию оброзначают x=arcctg y. Поменяв местами x и y, получим:

y=arcctg x.(4)

Функция (4) − это функция, обратная к функции

Arctg 2 на окружности.

График функции арккотангенс можно получить из графика функции Arctg 2 на окружностис помощью преобразования симметрии относительно прямой y=x (Рис.5).

Arctg 2 на окружности

Свойства функции арккотангенс.

  1. Область определения функции: Arctg 2 на окружности.
  2. Область значений функции: Arctg 2 на окружности.
  3. Функция не является ни четной ни нечетной (так как функция не симметрична ни относительно начала координит, ни относительно оси Y).
  4. Функция убывает.
  5. Функция непрерывна.

Решим тригонометрическое уравнение

В интервале (0; π) для уравнения (5) существует одно t, для которого сtg t=a. Это t=arcctg a. Следовательно в интервале (0; π) уравнение (5) имеет один корень. Так как котангенс периодичная функция с основным периодом π, то общее решение уравнения (5) имеет следующий вид:

Arctg 2 на окружности(6)

Решения уравнения (5) можно представить на единичной окружности (Рис.6):

Arctg 2 на окружности

ctg t − это абсцис точки пересечения прямой Arctg 2 на окружностис прямым y=1. Любому числу a на линии котангенс соответствует только одна точка Arctg 2 на окружности. Прямая Arctg 2 на окружностипересекется с единичной окружностью в двух точках Arctg 2 на окружности. Но только точка Arctg 2 на окружностисоответствует интервалу (0; π), которое соответствует решению Arctg 2 на окружности.

Пример 1. Решить тригонометрическое уравнение:

Arctg 2 на окружности.

Решение. Воcпользуемся формулой (6):

Arctg 2 на окружности.

Так как в интервале (0; π)Arctg 2 на окружности, то

Arctg 2 на окружности.

Пример 2. Решить следующее тригонометрическое уравнение:

Arctg 2 на окружности.

Решение. Используя формулу (6), имеем

Arctg 2 на окружности.

С помощью онлайн калькулятора вычисляем Arctg 2 на окружности. Тогда

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Обратная тригонометрическая функция: Арктангенс (arctg)

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Определение

Арктангенс (arctg или arctan) – это обратная тригонометрическая функция.

Арктангенс x определяется как функция, обратная к тангенсу x , где x – любое число (x∈ℝ).

Если тангенс угла у равен х (tg y = x), значит арктангенс x равняется y :

Примечание: tg -1 x означает обратный тангенс, а не тангенс в степени -1.

Например:

arctg 1 = tg -1 1 = 45° = π/4 рад

Видео:Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать

Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.

График арктангенса

Функция арктангенса пишется как y = arctg (x) . График в общем виде выглядит следующим образом:

Arctg 2 на окружности

Видео:Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020Скачать

Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020

Свойства арктангенса

Ниже в табличном виде представлены основные свойства арктангенса с формулами.

Видео:Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Нахождение значений арксинуса, арккосинуса, арктангенса и арккотангенса

В данной статье рассматриваются вопросы нахождения значений арксинуса, арккосинуса, арктангенса и арккотангенса заданного числа. Для начала вводятся понятия арксинуса, арккосинуса, арктангенса и арккотангенса. Рассматриваем основные их значения, по таблицам, в том числе и Брадиса, нахождение этих функций.

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Значения арксинуса, арккосинуса, арктангенса и арккотангенса

Необходимо разобраться в понятиях «значения арксинуса, арккосинуса, арктангенса, арккотангенса».

Определения арксинуса, арккосинуса, арктангенса и арккотангенса числа помогут разобраться в вычислении заданных функций. Значение тригонометрических функций угла равняется числу a , тогда автоматически считается величиной этого угла. Если a – число, тогда это и есть значение функции.

Для четкого понимания рассмотрим пример.

Если имеем арккосинус угла равного π 3 , то значение косинуса отсюда равно 1 2 по таблице косинусов. Данный угол расположен в промежутке от нуля до пи, значит, значение арккосинуса 1 2 получим π на 3 . Такое тригонометрическое выражение записывается как a r cos ( 1 2 ) = π 3 .

Величиной угла может быть как градус, так и радиан. Значение угла π 3 равняется углу в 60 градусов (подробней разбирается в теме перевода градусов в радианы и обратно). Данный пример с арккосинусом 1 2 имеет значение 60 градусов. Такая тригонометрическая запись имеет вид a r c cos 1 2 = 60 °

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Основные значения arcsin, arccos, arctg и arctg

Благодаря таблице синусов, косинусов, тангенсов и котангенсов, мы имеет точные значения угла при 0 , ± 30 , ± 45 , ± 60 , ± 90 , ± 120 , ± 135 , ± 150 , ± 180 градусов. Таблица достаточно удобна и из нее можно получать некоторые значения для аркфункций, которые имеют название как основные значения арксинуса, арккосинуса, арктангенса и арккотангенса.

Таблица синусов основных углов предлагает такие результаты значений углов:

sin ( — π 2 ) = — 1 , sin ( — π 3 ) = — 3 2 , sin ( — π 4 ) = — 2 2 , sin ( — π 6 ) = — 1 2 , sin 0 = 0 , sin π 6 = 1 2 , sin π 4 = 2 2 , sin π 3 = 3 2 , sin π 2 = 1

Учитывая их, можно легко высчитать арксинус числа всех стандартных значений, начиная от — 1 и заканчивая 1 , также значения от – π 2 до + π 2 радианов, следуя его основному значению определения. Это и является основными значениями арксинуса.

Для удобного применения значений арксинуса занесем в таблицу. Со временем придется выучить эти значения, так как на практике приходится часто к ним обращаться. Ниже приведена таблица арксинуса с радианным и градусным значением углов.

в р а д и а н а х

α— 1— 3 2— 2 2— 1 201 22 23 2
a r c sin α к а к у г о л— π 2— π 3— π 4— π 60π 6π 4π 3
в г р а д у с а х— 90 °— 60 °— 45 °— 30 °0 °30 °45 °60 °
a r c sin α к а к ч и с л о— π 2— π 3— π 4— π 60π 6π 4π 3

Для получения основных значений арккосинуса необходимо обратиться к таблице косинусов основных углов. Тогда имеем:

cos 0 = 1 , cos π 6 = 3 2 , cos π 4 = 2 2 , cos π 3 = 1 2 , cos π 2 = 0 , cos 2 π 3 = — 1 2 , cos 3 π 4 = — 2 2 , cos 5 π 6 = — 3 2 , cos π = — 1

Следуя из таблицы, находим значения арккосинуса:

a r c cos ( — 1 ) = π , arccos ( — 3 2 ) = 5 π 6 , arcocos ( — 2 2 ) = 3 π 4 , arccos — 1 2 = 2 π 3 , arccos 0 = π 2 , arccos 1 2 = π 3 , arccos 2 2 = π 4 , arccos 3 2 = π 6 , arccos 1 = 0

в р а д и а н а х

α— 1— 3 2— 2 2— 1 201 22 23 21
a r c cos α к а к у г о лπ5 π 63 π 42 π 3π 2π 3π 4π 60
в г р а д у с а х180 °150 °135 °120 °90 °60 °45 °30 °0 °
a r c cos α к а к ч и с л оπ5 π 63 π 42 π 3π 2π 3π 4π 60

Таким же образом, исходя из определения и стандартных таблиц, находятся значения арктангенса и арккотангенса, которые изображены в таблице арктангенсов и арккотангенсов ниже.

α— 3— 1— 3 303 313
a r c t g a к а к у г о лв р а д и а н а х— π 3— π 4— π 60π 6π 4π 3
в г р а д у с а х— 60 °— 45 °— 30 °0 °30 °45 °60 °
a r c t g a к а к ч и с л о— π 3— π 4— π 60π 6π 4π 3

Видео:Отбор корней по окружностиСкачать

Отбор корней по окружности

Нахождение значений по таблицам синусов, косинусов, тангенсов и котангенсов Брадиса

a r c sin , a r c cos , a r c t g и a r c c t g

Для точного значения a r c sin , a r c cos , a r c t g и a r c c t g числа а необходимо знать величину угла. Об этом сказано в предыдущем пункте. Однако, точное значении функции нам неизвестно. Если необходимо найти числовое приближенное значение аркфункций, применяют таблицу синусов, косинусов, тангенсов и котангенсов Брадиса.

Такая таблица позволяет выполнять довольно точные вычисления, так как значения даются с четырьмя знаками после запятой. Благодаря этому числа выходят точными до минуты. Значения a r c sin , a r c cos , a r c t g и a r c c t g отрицательных и положительных чисел сводится к нахождению формул a r c sin , a r c cos , a r c t g и a r c c t g противоположных чисел вида a r c sin ( — α ) = — a r c sin α , a r c cos ( — α ) = π — a r c cos α , a r c t g ( — α ) = — a r c t g α , a r c c t g ( — α ) = π — a r c c t g α .

Рассмотрим решение нахождения значений a r c sin , a r c cos , a r c t g и a r c c t g с помощью таблицы Брадиса.

Если нам необходимо найти значение арксинуса 0 , 2857 , ищем значение, найдя таблицу синусов. Видим, что данному числу соответствует значение угла sin 16 градусов и 36 минут. Значит, арксинус числа 0 , 2857 – это искомый угол в 16 градусов и 36 минут. Рассмотрим на рисунке ниже.

Arctg 2 на окружности

Правее градусов имеются столбцы называемые поправки. При искомом арксинусе 0 , 2863 используется та самая поправка в 0 , 0006 , так как ближайшим числом будет 0 , 2857 . Значит, получим синус 16 градусов 38 минут и 2 минуты, благодаря поправке. Рассмотрим рисунок с изображением таблицы Брадиса.

Arctg 2 на окружности

Бывают ситуации, когда искомого числа нет в таблице и даже с поправками его не найти, тогда отыскивается два самых близких значения синусов. Если искомое число 0,2861573, то числа 0,2860 и 0,2863 являются ближайшими его значениями. Этим числам соответствуют значения синуса 16 градусов 37 минут и 16 градусов и 38 минут. Тогда приближенное значение данного числа можно определить с точностью до минуты.

Arctg 2 на окружности

Таким образом находятся значения a r c sin , a r c cos , a r c t g и a r c c t g .

Видео:Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Нахождение значения arcsin, arccos, arctg и arcctg

Чтобы найти арксинус через известный арккосинус данного числа, нужно применить тригонометрические формулы a r c sin α + a r c cos α = π 2 , a r c t g α + a r c c t g α = π 2 (не обходимо просмотреть тему формул суммы арккосинуса и арксинуса, суммы арктангенса и арккотангенса).

При известном a r c sin α = — π 12 необходимо найти значение a r c cos α , тогда необходимо вычислить арккосинус по формуле:

a r c cos α = π 2 − a r c sin α = π 2 − ( − π 12 ) = 7 π 12 .

Если необходимо найти значение арктангенса или арккотангенса числа a с помощью известного арксинуса или арккосинуса, необходимо производить долгие вычисления, так как стандартных формул нет. Рассмотрим на примере.

Если дан арккосинус числа а равный π 10 , а вычислить арктангенс данного числа поможет таблица тангенсов. Угол π 10 радиан представляет собой 18 градусов, тогда по таблице косинусов видим, что косинус 18 градусов имеет значение 0 , 9511 , после чего заглядываем в таблицу Брадиса.

Arctg 2 на окружности

При поиске значения арктангенса 0 , 9511 определяем, что значение угла имеет 43 градуса и 34 минуты. Рассмотрим по таблице ниже.

Arctg 2 на окружности

Фактически, таблица Брадиса помогает в нахождении необходимого значения угла и при значении угла позволяет определить количество градусов.

🎬 Видео

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Находим арктангенс. Алгебра 10 классСкачать

Находим арктангенс. Алгебра 10 класс

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать

Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.

Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctgСкачать

Тригонометрическая окружность (2) / таблица значений sin, cos, tg, ctg

Как найти значения аркфункций? (Перечень, ДВИ)Скачать

Как найти значения аркфункций? (Перечень, ДВИ)

Доказать, что arctg¹/₂+arctg¹/₃=π/4 и arctg1+arctg2+arctg3=πСкачать

Доказать, что arctg¹/₂+arctg¹/₃=π/4 и arctg1+arctg2+arctg3=π

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать

Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !
Поделиться или сохранить к себе: