Что называется медианой треугольника?
Определение.
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Как построить медиану треугольника?
Чтобы построить медиану треугольника , надо:
1) С помощью линейки найти и отметить середину стороны треугольника.
2) Соединить полученную точку с вершиной, лежащей напротив этой стороны.
Рисунок медианы треугольника:
Как построить медиану треугольника с помощью циркуля и линейки без шкалы, мы рассмотрим позже, в теме «Построить треугольник».
Сколько медиан имеет треугольник?
Так как у треугольника три вершины и три стороны, то и отрезков, соединяющих вершину и середину противолежащей стороны, тоже три. Значит, треугольник имеет три медианы.
Все три медианы треугольника пересекаются в одной точке:
Точка пересечения медиан называется центром тяжести треугольника.
В точке пересечения медианы треугольника делятся в отношении два к одному, считая от вершины:
Об этом свойстве медиан треугольника, а также о том, как найти длину медианы через длины сторон треугольника, более подробно мы поговорим позже и рассмотрим, как свойства медианы использовать при решении задач.
Кроме того, отдельно будут рассмотрены медиана прямоугольного треугольника, проведенная к гипотенузе и медиана равнобедренного треугольника, проведенная к его основанию, поскольку каждая из них обладает своими свойствами, которые надо знать и уметь применять.
Видео:7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Пошаговое построение медианы, биссектрисы медианы в треугольнике с помощью циркуля
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»
Сертификат и скидка на обучение каждому участнику
Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. Поэтому, для построения медианы необходимо выполнить следующие действия:
1) найти середину стороны;
2) соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.
Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне. Поэтому, для построения биссектрисы необходимо выполнить следующие действия:
1) построить биссектрису какого-либо угла треугольника (а биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);
2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;
3) соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса.
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону. Поэтому, для построения высоты необходимо выполнить следующие действия:
1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);
2) из вершины, лежащей напротив проведенной прямой, опустить перпендикуляр к ней ( а перпендикуляр — это отрезок, проведенный из точки к прямой, составляющей с ней угол 90 градусов) — это и будет высота.
Задание для самостоятельной проверки.
1 вариант: Построить медиану остроугольного треугольника.
2 вариант: Построить медиану тупоугольного треугольника.
3 вариант: Построить медиану прямоугольного треугольника.
4 вариант: Построить биссектрису остроугольного треугольника.
5 вариант: Построить биссектрису тупоугольного треугольника.
6 вариант: Построить биссектрису прямоугольного треугольника.
Видео:Построение медианы в треугольникеСкачать
Геометрия. 7 класс
Конспект урока
Медианы треугольника. Биссектрисы треугольника. Высоты треугольника
Перечень рассматриваемых вопросов:
- Понятие медианы, биссектрисы, высоты треугольника.
- Построение медианы, высоты, биссектрисы.
- Точки пересечения медианы, высоты и биссектрисы в треугольнике.
- Создание представления о замечательных точках в треугольнике.
Биссектриса угла – это луч, исходящий из вершины угла и делящий его на два равных угла.
Биссектриса угла треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.
Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Вы уже знакомы с такими понятиями как треугольник, угол, биссектриса угла.
Разберем, как построить биссектрису треугольника, а также узнаем, что такое медиана и высота треугольника.
Начнём с понятия биссектриса угла треугольника. Это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны. AF – биссектриса ∠A треугольника ABC.
В любом треугольнике биссектрисы пересекаются в одной точке.
Введём понятие медианы треугольника.
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.
BM – медиана треугольника ABC.
В любом треугольнике медианы пересекаются в одной точке.
Введём понятие высоты треугольника.
Перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника.
AH – высота треугольника ABC.
В любом треугольнике высоты или их продолжения пересекаются в одной точке.
Итак, сегодня мы узнали, какие отрезки называются медианой, биссектрисой, высотой треугольника, и научились их изображать с помощью чертёжных инструментов.
Рассмотрим, как можно решить задачу на доказательство, используя понятие «медиана треугольника».
На рисунке изображён треугольник ABC, при этом AD – медиана ∆ABC продолжена за сторону BC, так что AD = DE.
Докажем, что треугольники ABD и CED равны.
По условию в треугольниках ABD и CED: сторона AD равна стороне DE. Т. к. АD – медиана ∆ABC, то, по определению медианы, BD = DC.
∠ADB = ∠CDE (по свойству вертикальных углов).
Следовательно, ∆ABD = ∆CED (по первому признаку равенства треугольников: если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны).
Что и требовалось доказать.
Разбор решения заданий тренировочного модуля.
В треугольнике ABC проведены биссектрисы AD и BM, которые пересекаются в точке O. Найдите углы треугольника ABO, если ∠BAC = 50°, ∠ABC = 80°, а сумма углов треугольника ABO равна 180°.
1.Нарисуем рисунок по условию задачи.
2.По условию AD и BM – биссектрисы ∆ABC.
∠BAC = 50°, ∠BAC = 2∠BAO =50° → ∠BAO = 25°
∠ABC = 80°, ∠ABC= 2∠ABO = 80°→∠ABO = 40°
3.Т. к. сумма углов треугольника ABO равна 180°, то ∠ABO + ∠BAO + ∠AOB = 180°.
5.∠AOB = 180° – (25° + 40°) = 115°.
Ответ: ∠BAO = 25°, ∠ABO = 40°, ∠AOB = 115°.
В треугольнике COD: ∠O = 90°. Найдите ∠МОВ, если ОА – биссектриса угла ∠СОM, при этом ∠COА = 20°, а ВО– биссектриса ∠МОD.
1.По условию ∠СОD = 90°.
Кроме того, ОА – биссектриса угла ∠СОM → ∠МОА = ∠СОА = 20°.
2.ВО – биссектриса ∠МОD→∠ВОD = ∠МОВ.
3. ∠СОD = ∠МОА + ∠СОА + ∠ВОD + ∠МОВ = 20° + 20° + 2∠МОВ = 40° + 2∠МОВ = 90°.
🎦 Видео
Построение высоты в треугольникеСкачать
Медиана треугольника. Построение. Свойства.Скачать
Построение биссектрисы в треугольникеСкачать
Высота, биссектриса, медиана. 7 класс.Скачать
№154. Дан треугольник ABC. Постройте: а) биссектрису АК; б) медиану ВМ; в) высоту СН треугольника.Скачать
Построение высоты в тупоугольном и прямоугольном треугольниках. 7 класс.Скачать
Построение медианы треугольникаСкачать
длина медианы #SHORTSСкачать
§7. Построение медианы треугольникаСкачать
ГЕОМЕТРИЯ 8 класс. Свойство медиан треугольникаСкачать
🔥 Свойства МЕДИАНЫ #shortsСкачать
Формулы для медианы треугольникаСкачать
Длина медианы треугольникаСкачать
Точка пересечения медиан в треугольникеСкачать
17. Медианы, биссектрисы и высоты треугольникаСкачать
Построение биссектрисы угла. 7 класс.Скачать
Медианы треугольника. Биссектрисы треугольника. Высоты треугольникаСкачать