- Окружность, круг и их элементы
- Теория к заданию №17
- Разбор типовых вариантов заданий №17 ОГЭ по математике
- Первый вариант задания
- Второй вариант задания
- Третий вариант задания
- Демонстрационный вариант ОГЭ 2019
- Четвертый вариант задания
- Пятый вариант задания
- Найдите длину окружности и площадь круга, если АВ — диаметр окружности, а хорды АС и ВС равны 12 см и 9 см.
- Ваш ответ
- решение вопроса
- Похожие вопросы
- 📸 Видео
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Окружность, круг и их элементы
В 17 задании ОГЭ по математике необходимо решить простую задачу по геометрии. Для успешного решения необходимо обладать базовыми знаниями по геометрии вообще, так как сложно выделить какую-то одну тему, по которой даны задания. Это относится ко всему модулю геометрии. Я рекомендую повторить понятия центральные и вписанные углы, свойства касательных к окружности, взаимосвязь между радиусом описанной или вписанной окружности в геометрические фигуры — в первую очередь прямоугольный треугольник и квадрат.
По спецификации ОГЭ здесь могут встретиться задания, связанные с необходимостью нахождения длин, углов и площадей.
Ответом в задании 17 является целое число или конечная десятичная дробь.
Теория к заданию №17
Несмотря на то, что в задании №17 могут потребоваться любые знания по геометрии, в данном разделе мы разберем теорию по теме «окружность».
Начнем рассмотрение с понятия вписанная окружность:
- Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис треугольника.
- Если окружность вписана в произвольный четырехугольник, тогда попарные суммы противолежащих сторон равны между собой: a + b = c + d
Длинна окружности и площадь:
Касательная и секущая:
- Касательная – прямая, имеющая с окружностью одну общую точку.
- Секущая – прямая, имеющая с окружностью две общие точки.
Описанная окружность и её свойства:
- Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его трем сторонам.
- Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы.
- Около трапеции можно описать окружность только тогда, когда трапеция равнобочная.
- Если окружность описана около произвольного четырехугольника, тогда попарные суммы противолежащих углов равны между собой.
Хорда – отрезок, соединяющий две точки окружности.
- Диаметр, делящий хорду пополам, перпендикулярен хорде.
- В окружности равные хорды равноудалены от центра окружности.
- Отрезки пересекающихся хорд связаны равенством:
Центральный и вписанный углы:
Ниже я разобрал три различных примера 10 задания. Если у вас остались пожелания, или вы хотите разобрать задачу, которой здесь нет, напишите об этом в комментарии.
Разбор типовых вариантов заданий №17 ОГЭ по математике
Первый вариант задания
Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.
Решение:
Внимательно посмотрим на рисунок. Угол ABC опирается на дугу ADC, а угол CAD — на дугу DC. Угол, который нам необходимо найти — ABD, опирается на дугу AD — которая является частью дуги ADC за вычетом дуги DC. Значит, угол ABD равен разности углов ABC и CAD:
∠ABD = 92 — 60 = 32
Второй вариант задания
Касательные в точках A и B к окружности с центром O пересекаются под углом 2º. Найдите угол ABO. Ответ дайте в градусах.
Решение:
Во-первых, касательные равны между собой по длине, а значит треугольник с основанием AB равнобедренный. Угол при вершине этого треугольника равен 2 градуса по условию, значит углы при основании равны:
Во-вторых, касательные перпендикулярны радиусу, то есть угол между ними и радиусом равен 90 градусов.
Заметим, что угол ABO, который необходимо найти, является частью угла между касательной и радиусом, а именно за вычетом угла, который мы нашли в первом пункте. Значит, этот угол равен:
Третий вариант задания
В треугольнике ABC известно, что AC = 16, BC = 12, угол C равен 90º. Найдите радиус описанной около этого треугольника окружности.
Решение:
Для решения необходимо вспомнить, что центр описанной около прямоугольного треугольника окружности расположен в середине гипотенузы. То есть гипотенуза является диаметром, а её половина — радиусом.
По теореме Пифагора найдем гипотенузу AB:
AB² = BC² + AC² = 12² + 16² = 144 + 256 = 400
Гипотенуза равна 20, значит радиус — 10.
Демонстрационный вариант ОГЭ 2019
Найдите длину хорды окружности радиусом 13 см, если расстояние от центра окружности до хорды равно 5 см. Ответ дайте в см.
Решение:
Для решения данной задачи необходимо провести радиус окружности к точке начала хорды:
Получаем прямоугольный треугольник, где гипотенуза c — радиус и равна 13 см, b — расстояние до хорды — 5 см. По теореме Пифагора находим катет a:
a² = c² — b² = 13² — 5² = 169 — 25 = 144
Но а — лишь половина хорды, поэтому вся хорда равна 2 • а = 24
Четвертый вариант задания
Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности равен 10. Найдите ВС, если АС=16.
Решение:
Сторона АВ треуг-ка АСВ является диаметром окружности. Это означает, что угол АСВ опирается на диаметр. Тогда угол АСВ равен 90 0 , и, следовательно, ∆АСВ прямоугольный.
Если ∆АСВ прямоугольный, то для нахождения одной из его сторон можно применить т.Пифагора. По т.Пифагора
АС 2 +ВС 2 =АВ 2 (1)
По условию АС=16, радиус окружности R=10. Если R=10, то АВ=2R=2·10=20.
Тогда из (1) получим:
Пятый вариант задания
Треугольник АВС вписан в окружность с центром в точке О. Найдите угол АСВ, если угол АОВ равен 113 0 . Ответ дайте в градусах.
Решение:
Поскольку вершина О угла АОВ лежит в центре окружности, значит, этот угол центральный. А если так, то он равен величине дуги АВ. Т.е. ᴗАВ=113 0 .
Угол АСВ является вписанным. Следовательно, его величина равна половине дуги, на которую он опирается. Из рисунка видно, что оба угла (АОВ и АСВ) опираются на одну и ту же дугу. Т.к. ᴗАВ=113 0 , то угол АСВ равен
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Найдите длину окружности и площадь круга, если АВ — диаметр окружности, а хорды АС и ВС равны 12 см и 9 см.
Видео:Длина окружности. Математика 6 класс.Скачать
Ваш ответ
Видео:Длина окружности. Практическая часть. 9 класс.Скачать
решение вопроса
Видео:КАК ИЗМЕРИТЬ ДЛИНУ ОКРУЖНОСТИ? · ФОРМУЛА + примеры · Длина окружности как найти? Математика 6 классСкачать
Похожие вопросы
- Все категории
- экономические 43,277
- гуманитарные 33,618
- юридические 17,900
- школьный раздел 606,929
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
📸 Видео
Длина окружности. Практическая часть. 9 класс.Скачать
Длина окружности. 9 класс.Скачать
+Как найти длину окружностиСкачать
Как измерить длину окружностиСкачать
Длина дуги окружности. 9 класс.Скачать
Геометрия 9 класс (Урок№23 - Длина окружности.)Скачать
Задание 16 (В1) ОГЭ по математике ▶ №11 (Минутка ОГЭ)Скачать
9 класс, 26 урок, Длина окружностиСкачать
ОГЭ. Задание 24. Геометрическая задача на вычисление.Скачать
Длина окружности и площадь кругаСкачать
Длина окружности. Площадь круга.Скачать
ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать
Геометрия. ОГЭ по математике. Задание 16Скачать
ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия АтанасянСкачать
Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать