900 градусов на окружности

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • 900 градусов на окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:10 класс, 11 урок, Числовая окружностьСкачать

    10 класс, 11 урок, Числовая окружность

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Тригонометрическая таблица

    В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90. 360 градусов. И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
    Первой рассмотрим таблицу косинуса, синуса, тангенса и котангенса от угла в 0, 30, 45, 60, 90. градусов. Определение данных величин дают определить значение функций углов в 0 и 90 градусов:

    sin 0 0 =0, cos 0 0 = 1. tg 0 0 = 0, котангенс от 0 0 будет неопределенным
    sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0,тангенс от 90 0 будет неопределенным

    Если взять прямоугольные треугольники углы которых от 30 до 90 градусов. Получим:

    sin 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
    sin 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
    sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3 , ctg 60 0 = √3/3

    Изобразим все полученные значения в виде тригонометрической таблицы:

    Видео:Длина окружности. Площадь круга - математика 6 классСкачать

    Длина окружности. Площадь круга - математика 6 класс

    Таблица синусов, косинусов, тангенсов и котангенсов!

    900 градусов на окружности

    Если использовать формулу приведения, наша таблица увеличится, добавятся значения для углов до 360 градусов. Выглядеть она будет как:

    900 градусов на окружности

    Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 0 0 +360 0 *z . 330 0 +360 0 *z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.

    900 градусов на окружности

    Разберем наглядно как использовать таблицу в решении.
    Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:

    900 градусов на окружности

    В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 1020 0 = 300 0 +360 0 *2. Найдем по таблице.

    900 градусов на окружности

    Для более поиска тригонометрических значений углов с точностью до минут используются таблицы Брадиса. Подробная инструкция как ими пользоваться на странице по ссылке.

    Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.

    Таблицы Брадиса поделены на несколько частей, состоят из таблиц косинуса и синуса, тангенса и котангенса — которая поделена на две части (tg угла до 90 градусов и ctg малых углов).

    Синус и косинус

    900 градусов на окружности

    tg угла начиная с 0 0 заканчивая 76 0 , ctg угла начиная с 14 0 заканчивая 90 0 .

    900 градусов на окружности

    tg до 90 0 и ctg малых углов.

    900 градусов на окружности

    Разберемся как пользоваться таблицами Брадиса в решении задач.

    Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.
    900 градусов на окружности
    Величины минут указаны с промежутком в шесть минут, как быть если нужное нам значение попадет именно в этот промежуток. Возьмем 44 минуты, а в таблице есть только 42. Берем за основу 42 и воспользуемся добавочными столбцами в правой стороне, берем 2 поправку и добавляем к 0,3040 + 0,0006 получаем 0,3046.
    900 градусов на окружности
    При sin 47 мин, берем за основу 48 мин и отнимаем от нее 1 поправку, т.е 0,3057 — 0,0003 = 0,3054
    900 градусов на окружности
    При вычислении cos работаем аналогично sin только за основу берем нижнюю строку таблицы. К примеру cos 20 0 = 0.9397
    900 градусов на окружности
    Значения tg угла до 90 0 и cot малого угла, верны и поправок в них нет. К примеру, найти tg 78 0 37мин = 4,967
    900 градусов на окружности
    а ctg 20 0 13мин = 25,83
    900 градусов на окружности

    Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в комментариях!

    Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

    Видео:ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия АтанасянСкачать

    ДЛИНА ОКРУЖНОСТИ и ПЛОЩАДЬ КРУГА 9 класс геометрия Атанасян

    Деление окружности на градусы

    Во всем мире принято странное деление окружности на 360 градусов. Со всех точек зрения было бы логичнее деление окружности на 2, потом на 4, потом на 8, 16, 32, 64 и т. д. части. А то поди ж ты: сначала делим окружность на 4 части, потом каждую четверть на 90 градусов. Почему на 90? Почему не на 100 или 120? Оказывается, деление окружности на 360 градусов ведет свое начало от вавилонских жрецов. Они, наблюдая за движением Солнца, обнаружили, что в день равноденствия Солнце от восхода до заката описывает на небесном своде полуокружность, в которой видимый поперечник Солнца укладывается ровно 180 раз. Поэтому-то они и стали каждую полуокружность делить на 180 частей, а каждую окружность – на 360 градусов! Школьный транспортир напоминает, что каждое его деление есть не что иное, как отпечаток – след Солнца, проходящего по небосклону в день равноденствия.

    900 градусов на окружности

    Существует, правда, египетская гипотеза происхождения деления окружности. Длительность года у египтян составляла 360 дней. Год был разбит на 12 месяцев, а каждый месяц на 30 дней. И Солнце по небу проходило каждый год через 12 зодиакальных созвездий. Так что Солнце находилось в каждом из этих созвездий по 30 дней. Итак, за 1 день солнце проходит по небу расстояние в 1 единицу пути. Таких единиц всего 360. И только потом эту единицу пути назвали градусом.

    Герой романа Жюля Верна «Таинственный остров» инженер Сайрес Смит, чтобы определить величину острого угла, образованного ножками самодельного циркуля, «измерил этот угол по окружности, разделённой на триста шестьдесят равных частей; угол равнялся десяти градусам». Зачем для измерения острого угла потребовалось делить на части всю окружность, когда достаточно рассмотреть её четверть, непонятно, и как удалось добиться их равенства? Поэтому, деление окружности непростой вопрос, которому во многих задачах стоит уделить время.

    Гра́дус, мину́та, секу́нда — общепринятые единицы измерения плоских углов. Также эти величины используются в картографии для определения координат произвольной точки земной поверхности, а также для определения азимута.

    Видео:Длина дуги окружности. 9 класс.Скачать

    Длина дуги окружности. 9 класс.

    Содержание

    Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

    Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

    Градус [ править | править код ]

    900 градусов на окружности

    Градус (от лат. gradus — деление шкалы, шаг, ступень) обозначается °. Один полный оборот соответствует углу в 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.

    Причина выбора градуса как единицы измерения углов неизвестна. Одна из теорий предполагает, что это связано с тем, что 360 — приблизительное количество дней в году [1] . Некоторые древние календари, такие как древнеперсидский, использовали год в 360 дней.

    Другая теория гласит, что аккадцы (вавилоняне) поделили окружность, используя угол равностороннего треугольника как базу и поделив результат на 60, следуя своей шестидесятеричной системе счисления [2] [3] .

    Если построить окружность радиусом 57 см, то 1 градус будет примерно соответствовать 1 см длины дуги данной окружности.

    Градус в альтернативных единицах измерения:

    1 ∘ = 2 π 360 = >>> 900 градусов на окружностирадиан = π 180 = 1 p ≈ 1 57,295 779513 ∘ >>= >approx 295779513^ >>>> 900 градусов на окружности[4] ≈ 0,017 4532925 0174532925> 900 градусов на окружности(радиан в 1°) 1 ∘ = 1 360 = >> 900 градусов на окружностиоборота=0,002(7) оборота=0,002777777777… 1 ∘ = 400 360 = >> 900 градусов на окружностиградов=1,(1) градов=1,11111111111… градов

    Видео:Радианная мера угла. 9 класс.Скачать

    Радианная мера угла. 9 класс.

    Минуты и секунды [ править | править код ]

    По аналогии с делением часа как интервала времени градус делят на 60 минут (от лат. minutus — маленький, мелкий; обозначается штрихом x′), а минуту — на 60 секунд (от лат. secunda divisio — второе деление; обозначается двумя штрихами y″. Ранее употреблялась величина в 1/60 секунды — терция (третье деление), с обозначением тремя штрихами — z″′. Деление градуса на минуты и секунды ввёл Клавдий Птолемей [5] ; корни же такого деления восходят к учёным Древнего Вавилона (где использовалась шестидесятеричная система счисления).

    Минуты и секунды в других системах измерения:

    1 ′ = 2 π 360 ∘ ⋅ 60 ′ = 1 ′ p ′ ≈ 1 ′ 3437,747 ′ >cdot 60′>>= 747′>>> 900 градусов на окружности[4] ≈ 2,908 88208 ⋅ 10 − 4 rad 90888208cdot 10^

    >> 900 градусов на окружности(1 минута в радианах) 1 ″ = 2 π 360 ∘ ⋅ 60 ′ ⋅ 60 ″ = 1 ″ p ″ ≈ 1 ″ 206264 , 8 ″ >cdot 60’cdot 60”>>= >approx 8”>>> 900 градусов на окружности[4] ≈ 4,848 136811 ⋅ 10 − 6 rad 848136811cdot 10^

    >> 900 градусов на окружности(1 секунда в радианах).

    Минуты и секунды в радианной мере из-за своих чрезмерно малых величин представляют ограниченный интерес и практически очень мало используются.
    Гораздо больший интерес представляет перевод десятичных (сотых, десятитысячных) долей градуса в минуты и секунды и обратно — см. Радиан#Связь радиана с другими единицами и Географические координаты.

    Угловая секунда [ править | править код ]

    900 градусов на окружности

    Углова́я секу́нда (англ. arcsecond , arc second , as , second of arc ; синонимы: дуговая секунда, секунда дуги [6] ) — внесистемная астрономическая единица измерения малых углов, тождественная секунде плоского угла [7] .

    Использование [ править | править код ]

    Угловая секунда (обозначается ″) используется в астрономии при измерении плоских углов в градусных мерах. При измерении углов в часовых мерах (в частности, для определения прямого восхождения) используется единица измерения «секунда» (обозначается s ). Соотношение между этими величинами определяется формулой 1 s =15″. [8]

    Иногда угловую секунду (и производные от неё дольные единицы) ошибочно называют арксекундой [6] [9] , что является простой транслитерацией с англ. arcsecond .

    Дольные единицы [ править | править код ]

    По аналогии с международной системой единиц (СИ), наряду с угловой секундой применяются и её дольные единицы измерения: миллисекунды (англ. milliarcseconds , mas ), микросекунды (англ. microarcseconds , µas ) и пикосекунды (англ. picoarcseconds , pas ). Они не входят в СИ (СИ рекомендует миллирадианы и микрорадианы), но допускаются к применению [7] . Однако согласно ГОСТ 8.417-2002, наименование и обозначения единиц плоского угла (градус, минута, секунда) не допускается применять с приставками [10] , в связи с чем такие дольные величины должны приводиться либо к единицам СИ (миллирадианам и т. п.), либо к угловым секундам, либо обозначаться исходными единицами ( mas , µas и pas соответственно).

    Связь различных угловых единиц измерения

    ЕдиницаВеличинаОбозначениеАббревиатураРадиан (прибл.)
    градус1/360 окружности°deg17,4532925 mrad
    минута1/60 градусаarcmin, amin, ′ ^ >> 900 градусов на окружности, MOA290,8882087 µrad
    секунда1/60 минутыarcsec4,8481368 µrad
    миллисекунда1/1000 секундыmas4,8481368 nrad
    микросекунда1 × 10 −6 секундыμas4,8481368 prad

    Дольные единицы могут использоваться для обозначения собственного движения звёзд и галактик, годичного параллакса и углового диаметра звёзд.

    Для наблюдения астрономических объектов под такими сверхмалыми углами астрономы прибегают к методу интерферометрии, при котором сигналы, принимаемые несколькими разнесёнными радиотелескопами, комбинируются в процессе апертурного синтеза. Так, используя методику интерферометрии со сверхдлинной базой, астрономы получили возможность измерить собственное движение галактики Треугольника. [ источник не указан 2692 дня ]

    В видимом свете существенно труднее достичь миллисекундного разрешения. Тем не менее, спутник Hipparcos справился с этой задачей в процессе астрометрических измерений, по результатам которых были составлены наиболее точные (по состоянию на 1997 год) каталоги звёзд Tycho (TYC) и Hipparcos (HIP) [11] [12] .

    Главная ≫ Инфотека ≫ Математика ≫ По следам вавилонян, или почему в окружности 360 градусов? // Наталья Карпушина

    900 градусов на окружности

    900 градусов на окружности

    Знаете ли вы, почему в окружности 360 градусов, а не 180 или, скажем, не 300? Откуда пошла традиция делить окружность на равные части и почему было выбрано именно такое их число? Оказывается, этому делению мы обязаны вавилонянам. Согласно их календарю, продолжительность года составляла 360 дней — именно столько раз, по наблюдениям древних астрономов, солнечный диск укладывался на годичном пути светила. Иными словами, за каждые сутки солнце делало один «шаг». Поэтому вавилоняне и разделили окружность на 360 равных частей, каждую из которых называют градусом (от лат. gradus — шаг, ступень). Считается, что они же изобрели простейший инструмент для измерения углов − транспортир. Но вот вопрос: как же древние сумели разделить окружность на равные части, не владея техникой геометрических построений и располагая лишь примитивными инструментами? Загадка…

    С подобной проблемой однажды столкнулся инженер Сайрес Смит, герой романа Жюля Верна «Таинственный остров». Чтобы определить величину острого угла, образованного ножками самодельного циркуля, он «измерил этот угол по окружности, разделённой на триста шестьдесят равных частей; угол равнялся десяти градусам». Вот, собственно, и всё, что сообщает о решении данной задачи Жюль Верн. Непонятно, зачем для измерения острого угла потребовалось делить на части всю окружность, когда достаточно рассмотреть её четверть, и уж совсем неясно, как удалось добиться их равенства. Можно лишь предположить, что инженер выполнял построения на земле с помощью подручных средств, как он не раз поступал при решении других практических задач, если те требовали знания геометрии.

    Сначала прикинем решение на бумаге. Для того чтобы разделить окружность на равные части, пригодится диск, край которого представляет собой окружность фиксированной длины l . Если катить диск по нарисованной на земле окружности длиной L = nl , где n = 2, 3, 4 …, то через n оборотов он обежит линию и вернётся в исходную точку. Пришло время проявить смекалку: сделаем на краю диска «острый выступ», оставляющий на земле отметку после каждого оборота. С его помощью мы разметим окружность, то есть разобьём на равные части. Допустим, нужно разделить окружность на дуги по 10°. В таком случае n = 360° : 10° = 36. Так как L превосходит l в 36 раз, то из соображений подобия и радиус R нарисованной на земле окружности должен быть во столько же раз больше радиуса r диска.

    900 градусов на окружности

    Теперь можно переходить к конкретным действиям. Измерим радиус диска. Пусть для определённости r = 5 см, тогда R = 180 см. Сделаем в диске отверстие по линии радиуса и вставим в него, например, кусочек спицы так, чтобы острый конец чуть торчал наружу. Отмерим кусок верёвки длиной 180 см и привяжем к его концам по колышку. Один колышек вобьём в землю, затем натянем верёвку и, удерживая её в таком состоянии, очертим другим колышком окружность. Наконец, прокатим по нарисованной линии диск; 36 меток (следов спицы) разделят окружность на дуги по 10° в каждой. Задача решена. Ясно, что в общем случае, подбирая подходящую длину радиуса R и количество «зарубок» на диске, легко разделить окружность на нужное число равных частей.

    Задачу можно решить и по-другому, как делали древние египтяне, строя прямой угол при помощи верёвки, разделённой узелками на равные части. За единицу измерения примем длину диска. Обмотаем верёвку вокруг диска и завяжем на конце отмеренного отрезка узелок. Проделаем ту же операцию необходимое число раз. Затем положим размеченную таким образом верёвку поверх нарисованной на земле окружности (узелки соответствуют меткам, которые оставил бы на земле катящийся диск в первом способе построения). В данном случае при вычерчивании окружности можно обойтись без рулетки: радиус R окружности получим, отложив на верёвке диаметр диска n /2 раз (при нечётном n придётся добавить длину радиуса).

    Проигрывая в точности построений, мы вместе с тем выигрываем в их простоте и доступности, что на практике зачастую ценится больше. Добавим, что верёвка с узелками — это примитивный циркуль, который используется до сих пор, когда надо провести на земле дугу большого радиуса, например при разметке спортивной арены, или очертить круг при разбивке клумбы.

    🎥 Видео

    КАК СДЕЛАТЬ руль Logitech Momo Racing 900 градусовСкачать

    КАК СДЕЛАТЬ руль Logitech Momo Racing 900 градусов

    Как найти центр круга или разделить трубу на две равных части.Скачать

    Как найти центр круга или разделить трубу на две равных части.

    Длина окружности. Математика 6 класс.Скачать

    Длина окружности. Математика 6 класс.

    Тригонометрическая окружность. Как выучить?Скачать

    Тригонометрическая окружность. Как выучить?

    Формулы приведения - как их легко выучить!Скачать

    Формулы приведения - как их легко выучить!

    Деление окружности на 3; 6; 12 равных частейСкачать

    Деление окружности на 3; 6; 12 равных частей

    Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

    Синус, косинус, тангенс, котангенс за 5 МИНУТ

    Что такое радиан?Скачать

    Что такое радиан?

    Мало кто знает об этой ФУНКЦИИ кромочного ФРЕЗЕРА! Не трать деньги, а сделай сам!Скачать

    Мало кто знает об этой ФУНКЦИИ кромочного ФРЕЗЕРА! Не трать деньги, а сделай сам!

    Геометрия 9 класс (Урок№30 - Поворот.)Скачать

    Геометрия 9 класс (Урок№30 - Поворот.)

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)Скачать

    🔴 ТРИГОНОМЕТРИЯ С НУЛЯ (Тригонометрическая Окружность на ЕГЭ 2024 по математике)

    Переделка руля с 270 на 900 градусов для ETS 2.Скачать

    Переделка руля с 270 на 900 градусов для ETS 2.

    Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

    Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи
    Поделиться или сохранить к себе:
    Комментарии: 0