780 градусов на окружности

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • 780 градусов на окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:10 класс, 11 урок, Числовая окружностьСкачать

    10 класс, 11 урок, Числовая окружность

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

    Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

    Градусы — радианы

    Видео:ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

    ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

    Онлайн конвертер для перевода градусов в радианы и обратно

    Теория

    Угол — это геометрическая фигура, которая образована двумя лучами, выходящими из одной точки.

    Радиа́н — угол, соответствующий дуге, длина которой равна её радиусу. Своё название данная едииница измерения получила от слова радиус. Имеет обозначение: рад, международное: rad.

    Радианы являются основной единицей используемой в вичислениях.

    Градус — общепринятая единица измерения плоского угла, которая равняется 1/90 части прямого угла или 1/360 часть окружности.

    В отличии от радиан, градусы являются чисто символическими единицами измерения, так сказать «взятые с потолка» и не имеют в своём значении ни какого математического основания.

    Причина выбора градуса в качестве единицы измерения углов неизвестна. В быту измерение углов в градусах выглядит удобнее и понятнее, но что касается математических вычислений, то здесь основными единицами являются радианы.

    Видео:Радианная мера угла. 9 класс.Скачать

    Радианная мера угла. 9 класс.

    Перевести градусы в радианы

    Онлайн калькулятор для перевода градусов в радианы, помимо этого конвертер выполнит перевод и в другие единицы измерения угловой меры.
    Формула перевода градусов в радианы: xрад=х°⋅π/180

    1 градус = 0.01745329252 радиана;
    30 градусов = 0.5235987756 радиана;
    45 градусов = 0.7853981634 радиана;
    180 градусов = 3.14159265359 радиана;

    Градус (обозначаение °). Один полный оборот соответствует углу в 360°. В прямом угле, таким образом, 90°, в развёрнутом — 180°.

    📸 Видео

    Формулы приведения - как их легко выучить!Скачать

    Формулы приведения - как их легко выучить!

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

    РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

    РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

    9 класс. Геометрия. Тригонометрические функции угла от 0° до 180°. Единичная окружность. Урок #1Скачать

    9 класс. Геометрия. Тригонометрические функции угла от 0° до 180°. Единичная окружность. Урок #1

    Градусы и радианы Как переводить?Скачать

    Градусы и радианы  Как переводить?

    Алгебра 10 класс (Урок№29 - Радианная мера угла.)Скачать

    Алгебра 10 класс (Урок№29 - Радианная мера угла.)

    Угловая скорость и радианная мера углаСкачать

    Угловая скорость  и радианная мера угла

    Задача 6 №27862 ЕГЭ по математике. Урок 105Скачать

    Задача 6 №27862 ЕГЭ по математике. Урок 105

    Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

    Математика| Преобразование тригонометрических выражений. Формулы и задачи

    ✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис ТрушинСкачать

    ✓ Всё, что нужно знать про окружность | ЕГЭ. Задания 1 и 16. Профильный уровень | Борис Трушин

    ТРИГОНОМЕТРИЯ с нуля за 30 минутСкачать

    ТРИГОНОМЕТРИЯ с нуля за 30 минут

    Задача 6 №27916 ЕГЭ по математике. Урок 133Скачать

    Задача 6 №27916 ЕГЭ по математике. Урок 133

    ✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис ТрушинСкачать

    ✓ Тригонометрия: с нуля и до ЕГЭ | #ТрушинLive #030 | Борис Трушин

    №147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВССкачать

    №147. На окружности с центром О отмечены точки А и В так, что угол АОВ — прямой. Отрезок ВС

    Криволинейное, равномерное движение материальной точки по окружности. 9 класс.Скачать

    Криволинейное, равномерное движение материальной точки по окружности. 9 класс.

    Тригонометрические функции и их знакиСкачать

    Тригонометрические функции и их знаки
    Поделиться или сохранить к себе: