3d max сетка треугольники

Основы сеточного моделирования

3D Studio MAX поддерживает много различных вариантов создания моделей (то есть моделирования). В их числе и сеточное моделирование, представляющее собой моделирование на уровне подобъектов: вершин, ребер, граней и полигонов. Подобъекты можно вытягивать, масштабировать, вращать, деформировать, удалять, объединять, добавлять; можно применять к ним множество других операций, изменяя таким образом исходный объект до полной неузнаваемости. Результатом подобных манипуляций могут быть совершенно разные трехмерные тела — от абстрактных объектов до полностью реальных моделей. Данный прием моделирования может быть применен к разным объектам 3D Studio MAX, однако пока мы знакомы лишь с примитивами, поэтому и приемы сеточного моделирования будем осваивать именно на них. Сразу отметим, что возможности сеточного моделирования гораздо шире, чем удастся рассмотреть в данном уроке. К этой теме мы в дальнейшем будем неоднократно возвращаться, но на более высоком уровне.

Видео:Топология. Базовые ошибки в сеткеСкачать

Топология. Базовые ошибки в сетке

Теоретические аспекты

Любой параметрический трехмерный объект, созданный на основе примитива, может быть преобразован в объект типа Editable Mesh (Редактируемая сетка) или Editable Poly (Редактируемая полисетка). Такой объект перестает быть параметрическим и в дальнейшем будет модифицироваться как сетка, то есть на уровне вершин, ребер, граней и полигонов.

К объектам типа Editable Mesh относятся геометрические модели трехмерных тел, представленных оболочками в виде сеток с треугольными ячейками. Объекты типа Editable Poly отличаются от редактируемых сеток тем, что их оболочки состоят не из треугольных граней, а из полигонов. Полигоны представляют собой многоугольники, у которых имеются как минимум четыре вершины, и заменяют совокупность двух или более смежных треугольных граней, лежащих в одной плоскости. Поэтому и сетку, составленную из полигонов, в отличие от сетки, составленной из треугольных граней, называют полигональной сеткой, или полисеткой.

Многие возможности редактирования объектов Editable Poly и Editable Mesh аналогичны, однако имеются и различия. Редактирование объектов типа Editable Mesh возможно на уровне вершин, ребер, граней, полигонов и элементов, а тип Editable Poly позволяет работать с вершинами, ребрами, полигонами, элементами и границами. Многие операции на первый взгляд совершенно аналогичны для обоих типов объектов, например операции Extrude и Bevel, но требуют разной настройки и зачастую приводят к различным результатам. Кроме того, полигональные сетки, в сравнении с обычными сетками Editable Mesh, обладают рядом дополнительных свойств, в частности допускают сглаживание без использования таких специальных модификаторов, как MeshSmooth (Сглаживание сетки). Напомним, что модификаторы предназначены для модификации объектов и становятся доступными после активизации панели Modify (Изменение).

Типы подобъектов и принцип их редактирования

Как уже было сказано, значительная часть объектов 3D Studio MAX может быть представлена в виде сеток, состоящих из однотипных элементов или подобъектов, к числу которых относятся вершины, ребра, грани и полигоны (рис. 1). Предназначенные для работы с ними средства скомпонованы по уровням: Vertex, Edge, Face, Polygon, Element и Border (рис. 2 и 3).

3d max сетка треугольники

Рис. 1. Подобъекты

3d max сетка треугольники

Рис. 2. Уровни Editable Mesh

3d max сетка треугольники

Рис. 3. Уровни Editable Poly

Вершины — это точки, в которых сходится и соединяется друг с другом любое число ребер. Для работы с вершинами предназначен уровень Vertex (Вершина).

Ребра — это линии границы грани. Ребра могут быть видимыми, если соседние грани не лежат в одной плоскости (тогда они отображаются сплошными линиями), или невидимыми; по запросу пользователя невидимые ребра могут отображаться пунктирной линией. За управление видимостью и положением ребер отвечает уровень Edge (Ребро).

Грани — это участки плоскости треугольной формы, представляющие собой элементарные ячейки сетки. В одной плоскости объекта может находиться множество граней, которые внешне будут совершенно неразличимы. Для работы с гранями предназначен уровень Face (Грань).

Смежные грани, лежащие в одной плоскости, могут быть объединены в многоугольники-полигоны. В случае преобразования объекта к типу Editable Poly процесс формирования полигонов из граней осуществляется автоматически. В обычной сетке полигон — это просто подобъект, позволяющий выделить сразу все смежные грани, лежащие в одной плоскости. У полигональной сетки нет таких подобъектов, как грани, и вся она состоит только из полигонов, причем некоторые полигоны могут быть и треугольными. За работу с полигонами отвечает уровень Polygon (Многоугольник).

Кроме того, сеточные объекты могут редактироваться на уровне Element (Элемент), который используется для работы с группами граней, объединенными в элемент каркаса, а объекты типа Editable Poly — и на уровне Border (Граница), что удобно, например, при вдавливании границ.

Редактирование сетчатых объектов можно производить как на уровне объекта в целом, так и на уровне подобъектов: граней, ребер или вершин. Чтобы объект стал редактируемым на уровне подобъектов и превратился в редактируемую сетку, необходимо выделить его и выбрать из контекстного меню команду Convert to=>Convert to Editable Mesh (Конвертировать=>Конвертировать в режим редактирования сетки); можно также применить к объекту модификатор Edit Mesh (Редактирование сетки). Для преобразования объекта к типу Editable Poly из контекстного меню выбирается команда Convert to=>Convert to Editable Poly (Конвертировать=>Конвертировать в режим редактирования полисетки). В обоих случаях это приведет к появлению на панели Modify целой серии свитков:

  • Selection (Выделение) — отвечает за включение нужного подобъектного уровня и управление режимами выбора подобъектов;
  • Soft Selection (Мягкое выделение) — предназначен для расширения возможностей выделения подобъектов и определяет закон распространения трансформаций по объему редактируемого каркаса;
  • Edit Geometry (Редактировать геометрию) — содержит основные инструменты изменения геометрии подобъектов. Некоторые инструменты одинаковы для всех уровней и для обоих типов сеток, а другие являются особыми для каждого уровня (и/или сетки). В перечень общих инструментов входят, в частности, следующие:

Attach (Присоединить) — позволяет добавлять к редактируемой модели новые каркасные объекты, при этом все грани присоединяемого объекта оказываются объединенными в новый элемент,

Detach (Отсоединить) — отвечает за отделение выбранного подобъекта в отдельный элемент или новый объект,

Remove Isolated Vertices (Удалить изолированные вершины) — позволяет удалять отдельно расположенные вершины объекта,

View Align и Grid Align (Ориентировать по текущему виду/Ориентировать по сетке) — осуществляет соответствующее изменение ориентации выбранных подобъектов,

Make Planar (Привести к плоскости) — устанавливает плоскостную ориентацию для выбранных подобъектов,

Collapse (Свести в точку) — выполняет коллапс (сжатие) и объединение всех вершин выбранных подобъектов в одну, располагая ее в геометрическом центре выделенной области;

  • Surface Properties (Свойства поверхности) — объединяет такие инструменты настройки свойств поверхности, которые предназначены для каждого уровня.
  • Выбор нужного уровня подобъектов осуществляется либо подсвечиванием уровня в списках подобъектов Editable Mesh или Editable Poly, либо щелчком по соответствующей кнопке в свитке Selection панели Modify. Для выбора самих подобъектов используются обычные инструменты выделения: Select Object (Выделить объект), Select and Move (Выделить и передвинуть), Select and Scale (Выделить и масштабировать), Select and Rotate (Выделить и повернуть) и Selection Region (Форма области выделения). Чтобы последовательно выделить несколько объектов, при выделении удерживают клавишу Ctrl.

    Для того чтобы вернуться от редактирования объекта на уровне подобъектов к обычному редактированию, нужно подсветить в списке подобъектов уровень Editable Mesh или Editable Poly.

    Моделирование при помощи вершин

    Вершины являются основным элементом редактирования сетки — достаточно нескольких манипуляций с вершинами, чтобы превратить стандартный примитив в совершенно другой объект.

    Для примера создайте примитив Box (Коробка), установив для него длину (Length) и ширину (Width) равными 30, а высоту (Height) равной 40 (рис. 4), и сохраните объект в файле. Не снимая выделения, установите режим, в котором возможно редактирование вершины, выбрав из контекстного меню команду Convert to=>Convert to Editable Mesh (Конвертировать=>Конвертировать в режим редактирования сетки). Чтобы получить возможность манипуляции вершинами, щелкните в свитке Selection на кнопке Vertex (рис. 5).

    3d max сетка треугольники

    Рис. 4. Исходный объект

    3d max сетка треугольники

    Рис. 5. Исходный объект в режиме Editable Mesh — выделены вершины

    Активизируйте инструмент Select and Move (Выделить и переместить) и последовательно перетащите вершины его основания так, чтобы параллелепипед превратился в усеченную пирамиду. Обратите внимание, что лучше всего начать перемещение вершин в окне проекций Perspective, так как во всех остальных проекциях вершины нижнего основания у параллелепипеда скрыты под верхними вершинами. А затем перейдите в окно проекции Top, что позволит обеспечить более точное положение вершин (рис. 6). Не забывайте, что для более точного перемещения вершин, равно как и объектов, можно напрямую указывать координаты их нового положения в нижней части окна программы. При желании можно перемещать одновременно сразу несколько вершин — в этом случае после выделения вершины довольно часто блокируют, щелкнув на кнопке Selection Lock Toggle (Переключатель блокировки выделения), которая тут же окрасится в желтый цвет. Блокировка сохраняет выделенную область при любых манипуляциях в программе, а разблокировка происходит в результате повторного щелчка по этой же кнопке.

    3d max сетка треугольники

    Рис. 6. Результат перемещения вершин основания

    Вершины можно не только перемещать, но и поворачивать инструментом Select and Rotate (рис. 7) или масштабировать инструментом Select and Uniform Scale (рис. 8). А можно свести выделенные вершины в одну точку, щелкнув на кнопке Collapse (Свести в точку) на панели Modify в свитке Edit Geometry (рис. 9).

    3d max сетка треугольники

    Рис. 7. Поворот вершин верхнего основания усеченной пирамиды

    3d max сетка треугольники

    Рис. 8. Масштабирование вершин верхнего основания усеченной пирамиды

    3d max сетка треугольники

    Рис. 9. Результат сведения вершин в одну точку

    Моделирование при помощи ребер

    Чтобы поэкспериментировать, воспользуйтесь ранее созданным и сохраненным параллелепипедом и установите для него режим редактирования ребер — Edge, щелкнув на соответствующей кнопке в свитке Selection. Как и вершины, ребра можно перемещать, поворачивать и масштабировать примерно таким же способом, хотя есть и некоторые отличия.

    Для поворота ребер можно воспользоваться инструментом Select and Rotate (Выделить и повернуть), а можно активировать возможности свитка Edit Geometry (Редактировать геометрию) панели Modify, где для поворота предназначена кнопка Turn (Развернуть). Активируйте данную кнопку и кликните на любом ребре параллелепипеда — это приведет к повороту соответствующего ребра, что продемонстрировано на рис. 10 и 11.

    3d max сетка треугольники

    Рис. 10. Поворот ребра (стрелкой показано ребро, по которому щелкнули мышью)

    3d max сетка треугольники

    Рис. 11. Объект после поворота ребра

    Моделирование при помощи полигонов

    Переключитесь в режим редактирования полигонов, щелкнув на кнопке Polygon (Многоугольник) в свитке Selection. Многоугольники при желании можно перемещать, поворачивать и масштабировать обычным способом. Кроме того, здесь возможно множество других интересных преобразований, доступных из свитка Edit Geometry панели Modify.

    Рассмотрим операцию Extrude (Выдавливание), при помощи которой можно создавать выпуклые элементы объекта. Щелкните на кнопке Extrude, затем кликните на любом многоугольнике редактируемого объекта (при этом многоугольник выделится, а внешний вид указателя мыши изменится) и переместите его — в зависимости от направления перемещения выбранных граней на их основе будет создан выпуклый (рис. 12) или вогнутый фрагмент объекта.

    3d max сетка треугольники

    Рис. 12. Выдавливание многоугольника

    Можно добавить к выбранным граням прямую фаску, что осуществляется путем вставки плоскостей вместо общих ребер выделенных граней и совершенно необходимо при сглаживании формы модели. Для добавления фаски щелкните на кнопке Bevel (Фаска), выделите полигон и перемещением мыши подберите подходящий вариант фаски (рис. 13).

    3d max сетка треугольники

    Рис. 13. Результат добавления к полигону прямой фаски

    Данными операциями можно воспользоваться и на более сложных примитивах, например на геосфере, предварительно преобразованной в объект типа Editable Poly (рис. 14) при помощи команды Convert to=>Convert to Editable Poly (Конвертировать=>Конвертировать в режим редактирования полисетки) и переведенной в режим редактирования полигонов. Результат наложения на один выбранный полигон геосферы операции Extrude со значением параметра Extrusion Hight (Высота выдавливания) равным 50 представлен на рис. 15. Разнообразные преобразования, в частности Extrude, можно применить как к одному полигону, так и к группе полигонов, выделив их при нажатой клавише Ctrl (рис. 16), или сразу ко всем полигонам одновременно (рис. 17 и 18).

    3d max сетка треугольники

    Рис. 14. Геосфера с выделенным полигоном

    3d max сетка треугольники

    Рис. 15. Результат наложения операции Editable к одному полигону

    3d max сетка треугольники

    Рис. 16. Применение операции Editable к группе полигонов

    3d max сетка треугольники

    Рис. 17. Применение операции Editable ко всем полигонам

    3d max сетка треугольники

    Рис. 18. Результат наложения операции Editable на все полигоны

    Особо стоит сказать о сглаживании подобъектов. Как уже было отмечено, объекты, представленные в виде полигональных сеток, могут сглаживаться без применения модификатора MeshSmooth (Сглаживание сетки) — довольно часто его с успехом может заменить операция MSmooth (Сглаживание) из свитка Edit Geometry (Редактировать геометрию). Попробуйте применить ее, например, к ранее модифицированной геосфере, установив коэффициент сглаживания равным 10 (рис. 19).

    3d max сетка треугольники

    Рис. 19. Сглаживание модифицированной геосферы

    Видео:Преобразовываем треугольную сетку stl модели в четырехугольную при помощи Quadrify AIIСкачать

    Преобразовываем треугольную сетку  stl модели в четырехугольную при помощи  Quadrify AII

    Сеточное моделирование на конкретных примерах

    Яйцо из шара

    Создайте произвольный шар (рис. 20). Преобразуйте объект к типу Editable Mesh, выбрав из контекстного меню команду Convert to=>Convert to Editable Mesh (Конвертировать=>Конвертировать в режим редактирования сетки), и перейдите в режим редактирования вершин, щелкнув на кнопке Vertex. Чтобы обеспечить более плавное деформирование шара, включите режим Soft Selection (Мягкое выделение) с примерно такими параметрами, как на рис. 21, и выделите инструментом Select Object все вершины, расположенные в центральной части и в верхней трети шара. Удобнее выделять вершины не по одной с нажатой клавишей Ctrl, а заключить все выделяемые вершины в прямоугольный контейнер. Немного переместите выделенные вершины вверх при помощи инструмента Select and Move (Выделить и переместить), а затем слегка сузьте выделенную область инструментом Select and Squash (Выделить и сжать). Вновь выделите вершины верхней части шара, но уменьшите число сечений на одно снизу, а затем выполните в их отношении те же операции. Точно такие же операции последовательно произведите еще несколько раз, каждый раз уменьшая размер выделенной области на одно сечение и пытаясь придать объекту форму яйца (рис. 22). Для сглаживания модели примените к объекту модификатор MeshSmooth (Сгладить сетку), выбрав его из списка Modifier List (рис. 23) и настроив его параметры приблизительно так, как на рис. 24, а в результате получите яйцо (рис. 25).

    3d max сетка треугольники

    Рис. 20. Исходный объект — шар

    3d max сетка треугольники

    Рис. 21. Выделение вершин для первой трансформации и параметры режима Soft Selection

    3d max сетка треугольники

    Рис. 22. Объект после последней деформации — проекция Front

    3d max сетка треугольники

    Рис. 23. Выбор модификатора MeshSmooth

    3d max сетка треугольники

    Рис. 24. Настройка параметров модификатора MeshSmooth

    3d max сетка треугольники

    Гантель из цилиндра

    Создайте произвольный цилиндр с 24 сторонами и 9 сегментами высоты (рис. 26). Преобразуйте объект к типу Editable Mesh и перейдите в режим редактирования вершин, щелкнув на кнопке Vertex. При помощи инструмента Lasso Selection Region (Выделение лассо) нужно выделить вершины четырех средних поперечных сечений цилиндра (рис. 27) и масштабировать их инструментом Select and Uniform Scale (Выделить и равномерно масштабировать) в сторону уменьшения так, чтобы сформировать самую узкую область гантели (рис. 28). Поскольку вершины расположены слишком близко, для того чтобы выделение проходило удачно, следует увеличить масштаб изображения и перейти в режим одного окна, щелкнув на кнопке Min/Max Togge (Переключатель Min/Max). Кроме того, при определенном положении объекта не каждое сечение вам удастся выделить идеально (часть вершин с обратной стороны объекта могут оказаться невыделенными), поэтому возможно, что объект придется неоднократно поворачивать и переходить из проекции в проекцию.

    3d max сетка треугольники

    Рис. 26. Исходный объект — цилиндр

    3d max сетка треугольники

    Рис. 27. Выделение вершин в центральной части цилиндра

    3d max сетка треугольники

    Рис. 28. Результат масштабирования средней части цилиндра

    Одновременно выделите по два крайних сечения цилиндра (не забывая удерживать нажатой клавишу Ctrl) и масштабируйте вершины так, чтобы расстояния между сечениями увеличились (рис. 29). Выделите второе с левого края сечение и масштабируйте его таким образом, чтобы расстояние между данным сечением и сечением слева от него стало примерно равным расстоянию между данным сечением и сечением справа от него. Аналогичную операцию проведите для второго с правого края сечения.

    3d max сетка треугольники

    Рис. 29. Масштабирование крайних сечений цилиндра

    Переключитесь в режим редактирования полигонов, щелкнув на кнопке Polygon, и создайте фаски для крайних сечений. Для этого выделите инструментом Select Object крайний левый полигон, щелкните на кнопке Bevel и определите параметры фаски мышью либо введите нужные значения вручную (рис. 30). Второй вариант гораздо надежнее, особенно с учетом того, что придется создавать точно такую же фаску с правой стороны. Создайте аналогичную фаску с правой стороны. Полученная в итоге гантель представлена на рис. 31.

    3d max сетка треугольники

    Рис. 30. Добавление фаски с левой стороны

    3d max сетка треугольники

    Морской еж из геосферы

    Создайте примитив GeoSphere с параметрами, представленными на рис. 32, и преобразуйте объект к типу Editable Poly. Перейдите в режим редактирования полигонов, выделите все полигоны геосферы и примените к ним операцию Bevel, установив высоту скоса (Height) равной 0 и обводку (Outline Amount) равной –1 (рис. 33). Не снимая выделения, повторите данное преобразование еще три раза, каждый раз меняя параметры в соответствии с рис. 34, 35 и 36, — результат показан на рис. 37. Для сглаживания объекта примените к нему модификатор MeshSmooth (Сгладить сетку), выбрав его из списка Modifier List. Настройте параметры модификатора: в разделе Subdivision Method выберите вариант NURMS, а в разделе Subdivision Amount установите значение Iterations (Итерации) равным 0, а Smoothness (Гладкость выравнивания) — равным 1. Полученная в итоге модель напоминает морского ежа (рис. 38).

    3d max сетка треугольники

    Рис. 32. Исходный объект — геосфера

    3d max сетка треугольники

    Рис. 33. Результат первого применения операции Bevel

    3d max сетка треугольники

    Рис. 34. Результат второго применения операции Bevel

    3d max сетка треугольники

    Рис. 35. Результат третьего применения операции Bevel

    3d max сетка треугольники

    Рис. 36. Результат четвертого применения операции Bevel

    3d max сетка треугольники

    Рис. 37. Вид геосферы после многократной Bevel-деформации

    3d max сетка треугольники

    Рис. 38. Морской еж

    Кубик Рубика из куба

    Попробуем создать кубик Рубика не из набора отдельных кубиков, а на основе одного куба. Создайте примитив Box (Коробка) с такими параметрами, как на рис. 39. Обратите внимание на число сегментов по глубине, высоте и ширине, которое в точности соответствует запланированному числу кубиков на каждой из сторон: выбрано три сегмента, а значит, будет и три кубика. Преобразуйте объект к типу Editable Poly и установите режим редактирования полигонов. Выделите все полигоны и примените к ним операцию Bevel (Фаска) при параметрах: Bevel Type — By Poligon, Height — 5, Outline Amount — 0. А затем повторите данную операцию в отношении полигонов, но уже при параметрах Height — 0 и Outline Amount — 2. В итоге куб окажется разбитым на отдельные кубические фрагменты и будет очень похож на настоящий кубик Рубика (рис. 40).

    3d max сетка треугольники

    Рис. 39. Исходный объект — куб

    3d max сетка треугольники

    Рис. 40. Кубик Рубика

    При желании кубик можно сделать разноцветным, но для этого его придется предварительно разбить на отдельные элементы. Выделите полигоны, расположенные на одной стороне кубика (рис. 41), и щелкните в свитке Edit Geometry на кнопке Detach (Отсоединить, рис. 42) — подобъекты окажутся отделенными. Чтобы выделить отделенный объект, щелкните на кнопке Select By Name (Выделять по имени) и выберите имя объекта (рис. 43), а потом перекрасьте его в другой цвет обычным образом (рис. 44). Вновь перейдите к кубу, активизируйте режим редактирования полигонов и аналогичным образом выделите полигоны на другой стороне кубика, превратите их в отдельный объект командой Detach (Отсоединить), выделите созданный объект по имени и тоже перекрасьте. И так — для всех остальных сторон. Для сглаживания всей модели целиком выделите все входящие в нее объекты, щелкнув на кнопке Select By Name (Выделять по имени) и указав вариант All (Все), и примените к ним модификатор MeshSmooth (Сгладить сетку) при параметрах как на рис. 45. Полученный в конечном счете разноцветный кубик Рубика представлен на рис. 46.

    3d max сетка треугольники

    Рис. 41. Выделение отделяемых полигонов

    3d max сетка треугольники

    Рис. 42. Параметры операции Detach

    3d max сетка треугольники

    Рис. 43. Выделение объекта Object01

    3d max сетка треугольники

    Рис. 44. Кубик после перекраски одной из сторон

    3d max сетка треугольники

    Рис. 45. Настройка параметров модификатора MeshSmooth

    3d max сетка треугольники

    Рис. 46. Разноцветный кубик Рубика

    Ограненные кристаллы из геосферы

    Создайте примитив GeoSphere (рис. 47), конвертируйте его в тип Editable Mesh и перейдите в режим редактирования вершин. Выделите все вершины выше центрального сечения (рис. 48) и сведите их в одну плоскость, щелкнув в свитке Edit Geometry на кнопке Make Planar (Привести к плоскости, рис. 49). Выделите все вершины, лежащие ниже центрального сечения (рис. 50), и сведите их в одну точку, щелкнув на кнопке Collapse (Свести в точку, рис. 51). По окончании избавьтесь от острых углов — для этого переключитесь в режим редактирования ребер Edge, выделите все ребра и примените к ним операцию Chamfer (Прямая фаска), установив величину скоса в 0,5 единиц. В итоге будет получен кристалл, представленный на рис. 52 (конечно, чтобы созданный объект действительно походил на кристалл, потребуется серьезная настройка текстуры, но это уже иная тема).

    3d max сетка треугольники

    Рис. 47. Исходный объект — геосфера

    3d max сетка треугольники

    Рис. 48. Выделение вершин, сводимых в плоскость

    3d max сетка треугольники

    Рис. 49. Результат сведения вершин в плоскость

    3d max сетка треугольники

    Рис. 50. Выделение вершин, сводимых в точку

    3d max сетка треугольники

    Рис. 51. Результат сведения вершин в точку

    3d max сетка треугольники

    Рис. 52. Ограненный кристалл

    При желании форму созданного кристалла можно изменять, масштабируя и перемещая отдельные вершины. Однако предварительно стоит объединить сведенные воедино вершины в одну точку. Дело в том, что при сведении вершин на плоскость или в точку они сохраняются по отдельности, так что потом при моделировании на уровне вершин будут возникать проблемы. Например, если часть вершин, лежащих в одной точке, выделилась, а другая — нет, то соответственно при перемещении одни останутся на месте, а другие передвинутся со всеми вытекающими из этого последствиями. Для объединения выбранных вершин в одну предназначен свиток Weld (Объединить, рис. 53). При активизации кнопки Selected (Выбранные) операция производится над всеми выделенными вершинами, попадающими в Weld Threshold (Порог Объединения). Кнопка Target (Целевые) позволяет объединять вершины, перемещая выбранную вершину к требуемой.

    3d max сетка треугольники

    Рис. 53. Свиток Weld

    Для примера изменим форму кристалла, чтобы он стал более плоским и широким. Инструментом Lasso Selection Region (Выделение лассо) вначале выделите все вершины плоскости (кристалл нужно предварительно повернуть таким образом, чтобы можно было выделить только нужные вершины, рис. 54). Установите величину порога Weld Threshold (Порог объединения) равной 1 и щелкните на кнопке Selected (Выбранные) — вершины плоскости объединятся. Аналогичным способом выделите и объедините вершины основания, которые были сведены в одну точку. После этого последовательно масштабируйте и переместите нужные вершины (рис. 55).

    3d max сетка треугольники

    Рис. 54. Выделение объединяемых вершин

    3d max сетка треугольники

    Рис. 55. Преобразованный кристалл

    Футбольный мяч из геосферы

    Создайте геосферу с параметрами, представленными на рис. 56. На параметры обратите особое внимание, так как довольно сложно найти такие варианты, когда полигоны удается точно объединить в шестиугольники, являющиеся элементами мяча. Преобразуйте объект к типу Editable Poly и перейдите в режим редактирования полигонов. Начните последовательно выделять полигоны геосферы при нажатой клавише Ctrl, формируя из них шестиугольники. В конечном счете нужно обработать все полигоны, но выделять одновременно соседние шестиугольники нельзя, так как применяемые к ним затем операции должны относиться отдельно к каждой группе шестиугольников. Однако для ускорения процесса можно за один прием выделять несколько не граничащих друг с другом шестиугольников — например как показано на рис. 57. По окончании выделения партии шестиугольников примените к ним операцию Extrude, установив в поле Extrusion Type вариант Group и присвоив параметру Extrusion Hight значение 0,2. Затем выполните данное действие в отношении следующей партии шестиугольников и т.д. Окончательный результат представлен на рис. 58.

    3d max сетка треугольники

    Рис. 56. Исходный объект — геосфера

    3d max сетка треугольники

    Рис. 57. Выделение отдельных шестиугольников мяча

    3d max сетка треугольники

    Рис. 58. Результат применения преобразования Extrude ко всем шестиугольникам

    После этого для каждого шестиугольника примените операцию Bevel при таких параметрах, как на рис. 59, что приведет к очередному изменению геосферы (рис. 60). Для сглаживания объекта примените к нему модификатор MeshSmooth (Сгладить сетку), настроив его параметры в соответствии с рис. 61. Полученный в итоге футбольный мяч представлен на рис. 62.

    3d max сетка треугольники

    Рис. 59. Применение операции Bevel к очередной партии шестиугольников

    3d max сетка треугольники

    Рис. 60. Геосфера после выдавливания и наложения фасок

    3d max сетка треугольники

    Рис. 61. Настройка параметров модификатора MeshSmooth

    3d max сетка треугольники

    Рис. 62. Футбольный мяч

    Шахматная пешка из цилиндра

    Создайте цилиндр с параметрами, показанными на рис. 63. Поскольку в объекте довольно много сечений, для удобства, в зависимости от ситуации, мы будем их нумеровать в направлении снизу вверх или в обратном направлении. Преобразуйте объект к типу Editable Mesh и перейдите в режим редактирования вершин. Установив вариант выделения прямоугольных областей (Restangular Selection Region), выделите вершины самого нижнего сечения и немного перетащите их по оси Y вниз (рис. 64). Одновременно выделите все вершины четырех нижних сечений и переместите их вниз на то же самое расстояние. Затем выделите вершины 2-го и 3-го сечений снизу и масштабируйте их так, как показано на рис. 65.

    3d max сетка треугольники

    Рис. 63. Исходный объект — цилиндр

    3d max сетка треугольники

    Рис. 64. Перемещение вершин нижнего сечения

    3d max сетка треугольники

    Рис. 65. Результат масштабирования вершин 2-го и 3-го сечений

    Переключитесь в режим редактирования полигонов, щелкнув на кнопке Polygon. Выделите полигон, объединяющий 2-е и 3-е сечения снизу, и примените к нему операцию Extrude, установив для нее режим Local Normal и вручную введя значение штампа равное –5. Затем выделите 2-е сечение снизу и масштабируйте полигон так, чтобы диаметры 1-го и 2-го сечений были одинаковыми. Аналогичную операцию выполните в отношении 3-го сечения (рис. 66).

    3d max сетка треугольники

    Рис. 66. Объект после штамповки и повторного масштабирования сечений

    Переключитесь в режим редактирования ребер, щелкнув на кнопке Edge, выделите 5-е, 6-е и 7-е ребра снизу и масштабируйте их примерно так, как показано на рис. 67. Перейдите в режим редактирования вершин, выделите все расположенные выше вершины и переместите их вверх так, чтобы расстояние между 7-м и 8-м сечениями значительно увеличилось (рис. 68).

    3d max сетка треугольники

    Рис. 67. Масштабирование 5-го, 6-го и 7-го ребер

    3d max сетка треугольники

    Рис. 68. Одновременное масштабирование всех вершин верхней половины объекта

    Вновь вернитесь в режим редактирования полигонов, выделите полигон между 6-м и 7-м сечениями и примените к нему операцию Extrude (Выдавливание), установив для нее режим Local Normal и вручную введя значение штампа равное –3,5 (рис. 69). Переключитесь в режим редактирования вершин, выделите вершины 8-го сечения и инструментом Select and Squash (Выделить и сжать) уменьшите диаметр данного сечения примерно так, как показано на рис. 70. Выделите вершины 9-го и всех расположенных выше сечений и пропорционально масштабируйте их инструментом Select and Uniform Scale (Выделить и равномерно масштабировать, рис. 71).

    3d max сетка треугольники

    Рис. 69. Объект после повторной штамповки

    3d max сетка треугольники

    Рис. 70. Сжатие 8-го сечения

    3d max сетка треугольники

    Рис. 71. Равномерное масштабирование вершин верхних сечений

    Переключитесь в режим редактирования ребер, выделите 6-е и 7-е ребра сверху и пропорционально уменьшите их размеры (рис. 72). Выделите самое верхнее ребро и уменьшите его, создав фаску (рис. 73). Выделите 3-е и 4-е сверху ребра и увеличьте их примерно так, как показано на рис. 74. Выделите 10-е сверху ребро и переместите его вверх (рис. 75). Откорректируйте расстояния между 1-м и 2-м и между 3-м и 4-м сечениями. В конечном счете будет получена шахматная фигура, представленная на рис. 76.

    3d max сетка треугольники

    Рис. 72. Масштабирование 6-го и 7-го ребер

    3d max сетка треугольники

    Рис. 73. Объект после масштабирования верхнего ребра

    3d max сетка треугольники

    Рис. 74. Масштабирование 3-го и 4-го ребер сверху

    Видео:Топология.Основы.Скачать

    Топология.Основы.

    3dsMax. Конвертировать треугольники в четырехугольники

    02.07.2019

    При использовании бесплатных моделей в сети Интернет или переходе из одного трехмерного пакета в другой в 3ds Max полигональный объект может быть представлен в виде треугольников (triangles) (рис. 1).

    3d max сетка треугольники

    Рис. 1. Полигональная модель в виде треугольников

    Такое представление модели не всегда удобно при риггинге и моделировании. Для преобразования полигональной модели в форму в виде аппроксимации с помощью четырехугольников существуют специальные команды.

    Прежде всего, нужно преобразовать объект из Editable Mesh в Editable Poly. Для этого выделите модель, щелкните правой кнопкой мыши и выберите в контекстном меню Convert To: Convert to Editable Poly (рис. 2).

    3d max сетка треугольники

    Рис. 2. Конвертирование в Editable Poly

    Теперь в окне программы нужно отобразить панель Ribbon (если она еще не отображена) с дополнительными инструментами. Для этого переместите указатель мышки в свободное место самой верхней строки меню программы, щелкните правой кнопкой и в контекстном меню установите флажок напротив Ribbon. (рис. 3.).

    3d max сетка треугольники

    Рис. 3. Установка панели Ribbon

    Убедитесь, что на панели Ribbon активна вкладка Modeling и щелкните по названию вкладки Geometry (All). Из выпадающего списка (рис. 3) выберите команду Quadrify All, чтобы сконвертировать все полигоны на модели (рис. 4).

    3d max сетка треугольники

    Рис. 4. Конвертирование полигонов

    В результате вместо треугольников появятся четырехсторонние полигоны (рис. 5).

    3d max сетка треугольники

    Рис. 5. Полигональная модель в виде четырехугольников

    Чтобы снова преобразовать четрыхугольники в треугольники, достаточно сконвертировать модель в Editable Mesh, выделить все ребра (Edge) и в настройках модификатора Editable Mesh в свитке Surface Properties выбрать команду Visible.

    Видео:3ds max - Количество треугольников и полигонов в сценеСкачать

    3ds max - Количество треугольников и полигонов в сцене

    Правильная сетка в 3d max

    Приветствую читателей моего блога, хочу сегодня поделиться с вами накопленными за годы изучения моделирования вещами. Это скриншоты сеток (wireframe) твердотельных объектов, людей, и разной мелочи. По ним можно изучать оптимально построение модели.

    Начнём с органики:

    Переходим к хардсюрфейсу:

    И закончим на нескольких интересных уроках:

    1) Добавление деталей на сложных поверхностях:

    2) Создание цилиндра с узором diamond:

    3) Способ создания отверстий в модели:

    4) Создание цилиндрических объектов из повторяющихся частей с помощью Bend и Instances:

    5) Создание металлической решетки:

    6) Гексагон с топологией под сглаживание:

    7) Создание геометрии с использованием метода Loft:

    8) Сквозная решетка с узором diamond под сглаживание:

    9) Трюки с топологией для сглаживания:

    10) Создание объемного текста под сглаживание:

    11) Создание телефонного провода под сглаживание:

    Иногда при финальной визуализации нужно представить какой-либо объект в виде сетки. Сделать это можно двумя способами, в зависимости от нужного результата. Первый вариант – сетка в 3D Max создается в виде материала и накладывается на объект, создавая красивую обводку всех его граней. Второй путь – создание физической сетки, когда после рендера объект будет выглядеть в виде каркаса.

    Иногда при финальной визуализации нужно представить какой-либо объект в виде сетки. Сделать это можно двумя способами, в зависимости от нужного результата. Первый вариант – сетка в 3D Max создается в виде материала и накладывается на объект, создавая красивую обводку всех его граней. Второй путь – создание физической сетки, когда после рендера объект будет выглядеть в виде каркаса.

    Для создания материала с сеткой в 3D Max к параметру Diffuse в свойствах материала нужно добавить карту VRayEdgesTex, которая расположена в списке Maps-Standart. Именно эта карта создает сетку на материале, а в ее параметрах можно задать толщину и цвет собственно сетки – цвет самого материала задается в параметре Diffuse. После наложения полученного материала можно увидеть прорисованные на материале ребра модели.

    Чтобы создать физическую сетку в 3D Max, к объекту нужно применить модификатор Lattice. Он превращает модель в каркас, причем можно включить отображение в точках пересечения линий узлы в виде сфер, треугольников или других фигур. Толщину сетки и её вид – число граней, можно также задать в параметрах модификатора. После рендера объект в сцене будет выглядеть именно сеткой. Так можно моделировать разные ажурные элементы.

    В видеоуроке показано, как использовать оба способа создания сетки в 3D Max. Оба они просты, и применение их не должно вызывать каких-либо трудностей.

    3d max сетка треугольники

    3d max сетка треугольники

    В этой статье из категории Словарь 3D терминов я объясню что означает топология, ретопология, меш и сетка.

    Меш или сетка – этими терминами называют совокупность вершин, рёбер и полигонов, которые составляют один 3D объект. Слово меш походит от английского mesh – ячейка сети. А слово сетка – от английского wireframe, что переводится как каркас/проволочный каркас.

    Также иногда еще использую термин геометрия , который по сути означает то же самое, что и меш. Всё дело в том, что слово geometry (геометрия) с английского языка переводится еще и как форма.

    • «Нужно перебросить меш перчатки в ZBrush» – означает, что вам нужно взять вашу модель 3D перчатки и экспортировать (перебросить) её в пакет для скульптинга ZBrush.
    • «Чтобы добавить реализма нужно покривить этот меш» – означает, что вам нужно в хаотическом порядке немного потаскать (попередвигать) вершинки (или рёбра, или полигоны) на 3D объекте, чтобы он перестал выглядеть идеально ровным.
    • «На заглавной картинке изображена сетка перчатки» – это означает, что на картинке видно не просто 3D модель перчатки, но также её сетку (wireframe), т.е. вот те белые лини, которые показывают КАК и КАКИЕ полигоны (квадратные, прямоугольные, состоящие из 4-х сторон или 3-х) формируют перчатку.

    Топология – это то, КАК ИМЕННО полигоны формируют 3D модель. На картинке ниже изображены (вверху) две 3D модели перчаток, а под ними изображена их сетка. На этом примере видно, что одну и ту же 3D модель можно описать разной топологией: в данном случае – правильной (слева) и неправильной (справа).

    3d max сетка треугольники

    Правильная топология служит двум целям:

    1. правильные деформации во время анимации;
    2. использование минимального количества полигонов для описания нужной формы.

    В первом случае, полигоны должны располагаться на 3D модели (обычно, живого существа) так, чтобы при движении костей или мышц, было легко повторить реальные выпуклости от этих же мышц или костей. Самый простой пример, это необходимость уплотнения сетки на коленях и локтях. Ведь когда мы моделируем персонажа в Т-позе, то локти и колени выпрямлены. А когда их нужно согнуть на 90 градусов, то получится, что полигонов не хватает (если моделер сделал сетку равномерной), чтобы сформировать красивое закругление локтя или колена.

    Во втором случае, обладая навыком низкополигонального моделирования, вы сможете каждый полигон использовать очень эффективно, а значит модель будет лёгкой (иметь мало полигонов). Это особенно ценится в игровых движках (ведь ресурсы всегда ограничены) или для анимации.

    Кстати, вот прикольное видео, где рассказывают как ограничения «железа» сделало игры лучше:

    Ретопология – буквально означает сделать топологию еще раз (снова, заново). Обычно, ретопологию делают на основе высокополигональной (hi-poly) 3D модели.

    3d max сетка треугольники

    К примеру, вы сначала в ZBrush (или в Mudbox, или 3D Coat) лепите детальную 3D модель гномика, совершенно не обращая внимание на топологию и плотность сетки. Потом, вам этого гномика нужно анимировать. Но заставить быстро реагировать гномика на 30 миллионов полигонов во вьюпорте Maya (или 3ds Max, или Blender) – это невыполнимая задача. Поэтому, этому гномику делают ретопологию. Т.е. на основе уже готовой высокополигональной формы создают низкополигональную сетку гномика, которую очень удобно и легко анимировать. А все те детали с высокополигональной версии переносят на низкополигональную с помощью разных приёмов, к примеру, с помощью карт дисплейсмента или нормалей.

    Иногда, используют сокращённое написание – ретопо.

    Для ретопологии разные 3D художники используют разный софт, основываясь на своих личных пристрастиях:

    • 3D Coat (один из самых удобных пакетов для ретопологии);
    • Topogun ;
    • Maya;
    • Blender;
    • 3ds Max;
    • modo;
    • ZBrush.

    Подпишитесь на обновление блога (вот 3 причины для этого).

    Похожие статьи:

    • Этапы создания реалистичного 3D портрета /… У меня ооочень часто спрашивают «Что нужно знать, чтобы сделать реалистичного человека?» или «Какие программы нужно использовать, чтобы добавить 3D…
    • Философские основы лоуполи моделирование под… Еще один урок от моделера техники в 3ds Max – Александра Барсукова, известного как DesertBull. Предыдущий урок был об основах…
    • Блендшейпы (Blend Shapes), морфы (Morph), Shape key | Словарь При поддержке интернет портала по поиску работы в Омске, огромная база вакансий для будущих тридешников. По своей сути, блендшейпы, морфы…
    • Что такое лупы (loops), лупики | 3D Словарь Создание вот такого справочника 3D-терминов по компьютерной графике является одним из методов раскрутки сайта с помощью внутренней оптимизации (внутренней перелинковки…
    • Скининг (Skinning) | Словарь Скининг (от английского слова skin – кожа, skinning – процесс создания кожи, встречается также написание скиннинг) – это один из…
    • Удачная попытка создать 3D-портрет: рендер… Инфо. Автор: Alex Huguet, Англия. Название работы: portrait attempt (попытка создания портрета). 3D-/2D-инструменты: Maya, Mudbox, VRay, ZBrush. Подробности создания 3D…
    • Основы низкополигонального моделирование под… Это вторая часть статьи об основах низкополигонального моделирования. Первая была о философских основах лоуполи моделирования под смус в 3ds Max.…

    Вам понравилась статья ? Хотите отблагодарить автора? Расскажите о ней друзьям.
    Или подпишитесь на обновление блога по E-Mail.

    Ответов: 2 к статье “Топология, ретопология, меш, сетка | 3D словарь, справочник”

    Здравствуйте, подскажите пожалуйста как в майке назначить переключение вида во вьюпорте с помощью клавиш на клаве, (через пробел неудобно), то же самое с поворотом камеры, хочу сделать как в максе.

    Отличная статья — замечательно подходит для всех, кто начинает свой не легкий, но крайне интересный, путь в мире 3д ) Спасибо!

    📽️ Видео

    Ретопология и исправление ошибок в 3ds MaxСкачать

    Ретопология и исправление ошибок в 3ds Max

    Идеальная сетка - какая она?Скачать

    Идеальная сетка - какая она?

    Треугольники в четырехугольники в BlenderСкачать

    Треугольники в четырехугольники в Blender

    Урок №29 Перевод треугольной сетки в четырехугольную.Скачать

    Урок №29 Перевод треугольной сетки в четырехугольную.

    Редактирование сетки объектов (Editable Poly) в 3ds maxСкачать

    Редактирование сетки объектов (Editable Poly) в 3ds max

    3ds Max для начинающих. Проект "Дирижабль" Гондола. Редактирование сетки для текстурирования.Скачать

    3ds Max для начинающих. Проект "Дирижабль" Гондола. Редактирование сетки для текстурирования.

    Урок по созданию сетки на сферической поверхности в 3ds MaxСкачать

    Урок по созданию сетки на сферической поверхности в 3ds Max

    Как работать со сложной сеткой в 3DS MAX?Скачать

    Как работать со сложной сеткой в 3DS MAX?

    Generate topology. Быстрый способ создать решетку и плитку в 3dmax без плагинов.Скачать

    Generate topology. Быстрый способ создать решетку и плитку в 3dmax без плагинов.

    Ретопология в 3ds maxСкачать

    Ретопология в 3ds max

    Детализация объектов в 3Dmax / уменьшение и увеличение полигонов сеткиСкачать

    Детализация объектов в 3Dmax / уменьшение и увеличение полигонов сетки

    Настройка сетки 3D Max. Пропала сетка в MaxСкачать

    Настройка сетки 3D Max. Пропала сетка в Max

    РЕНДЕР СЕТКИ В 3D MAX [ VRayEdgesTex - Сетка 3Ds Max ]Скачать

    РЕНДЕР СЕТКИ В 3D MAX [ VRayEdgesTex - Сетка 3Ds Max ]

    Сетка-конфетка. Zbrush + 3Ds MAXСкачать

    Сетка-конфетка. Zbrush + 3Ds MAX

    Моделирование бионического фасада в 3ds Max.Скачать

    Моделирование бионического фасада в 3ds Max.

    Пропала сетка в 3ds MaxСкачать

    Пропала сетка в 3ds Max
    Поделиться или сохранить к себе: