Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.
Проверим каждое из утверждений.
1) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы утверждать пересекаются окружности или нет, нужно ещё знать взаимное положение их центров.
2) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны» — верно; по признаку параллельных прямых.
3) «У равнобедренного треугольника есть центр симметрии» — неверно, верым будет утверждение: «У равнобедренного треугольника есть ось симметрии».
Видео:Две окружности пересекаются, если радиус одной ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
2 окружности пересекаются если
Задание 20. Какое из следующих утверждений верно?
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Вертикальные углы равны.
3) Диагонали трапеции пересекаются и делятся точкой пересечения пополам.
1) Нет, окружности могут пересекаться при разных радиусах больше 0.
2) Да, вертикальные углы всегда равны.
3) Не верно. Диагонали трапеции не всегда делятся точкой пересечения пополам.
Видео:Геометрия Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второйСкачать
Окружность. Относительное взаимоположение окружностей.
Если две окружности имеют только одну общую точку, то говорят, что они касаются.
Если же две окружности имеют две общие точки, то говорят, что они пересекаются.
Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.
Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).
Теорема.
Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.
Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.
Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.
Следствие.
Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.
Теоремы.
1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.
2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.
Признаки различных случаев относительного положения окружностей.
Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.
Эти окружности могут находиться в следующих 5-ти относительных положениях:
1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .
2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.
3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.
4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.
5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,
d R + R1, то окружности расположены одна вне другой, не касаясь.
2. Если d = R + R1, то окружности касаются извне.
3. Если d R — R1, то окружности пересекаются.
4. Если d = R — R1, то окружности касаются изнутри.
5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.
🔍 Видео
Геометрия 8 класс. Если две хорды окружности пересекаются, то AE·BE=DE·CEСкачать
9 класс, 8 урок, Взаимное расположение двух окружностейСкачать
№8. Верно ли утверждение: а) если две точки окружности лежат в плоскостиСкачать
Две окружности на плоскости. Математика. 6 класс.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать
Хорды AC и BD окружности пересекаются в точке P, BP=6, CP=8, DP=12. Найдите AP.Скачать
Задание 24 Две пересекающиеся окружностиСкачать
Геометрия Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этихСкачать
Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать
№662 (исправлено) Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если ∪AD=54°Скачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
ОГЭ 2023. РАЗБОР ЗАДАНИЯ №16 "Окружность"Скачать
Геометрия Докажите, что если хорды AB и CD окружности пересекаются в точке M, то AM٠MB = DM٠MCСкачать
№666. Хорды АВ и CD пересекаются в точке Е. Найдите ED, если: а) АЕ = 5, ВЕСкачать
Алгоритмы. Пересечение окружностейСкачать
20 задание ОГЭ. 11429875. Анализ геометрических высказыванийСкачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать