15 градусов на окружности

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрический круг — это самый простой способ начать осваивать тригонометрию. Он легко запоминается, и на нём есть всё необходимое.
Тригонометрический круг заменяет десяток таблиц.

  • 15 градусов на окружности

Вот что мы видим на этом рисунке:

  • Перевод градусов в радианы и наоборот. Полный круг содержит градусов, или радиан.
  • Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси , а значение синуса — на оси .
  • И синус, и косинус принимают значения от до .
  • Значение тангенса угла тоже легко найти — поделив на . А чтобы найти котангенс — наоборот, косинус делим на синус.
  • Знаки синуса, косинуса, тангенса и котангенса.
  • Синус — функция нечётная, косинус — чётная.
  • Тригонометрический круг поможет увидеть, что синус и косинус — функции периодические. Период равен .
  • Видео:Построение 15 угольника циркулемСкачать

    Построение 15 угольника циркулем

    А теперь подробно о тригонометрическом круге:

    Нарисована единичная окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями и , в которой мы привыкли рисовать графики функций.

    Мы отсчитываем углы от положительного направления оси против часовой стрелки.

    Полный круг — градусов.
    Точка с координатами соответствует углу ноль градусов. Точка с координатами отвечает углу в , точка с координатами — углу в . Каждому углу от нуля до градусов соответствует точка на единичной окружности.

    Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствущей данному углу .

    Всё это легко увидеть на нашем рисунке.

    Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса , синус — ордината . Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от до :

    Простым следствием теоремы Пифагора является основное тригонометрическое тождество:

    Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу , смотрим, положительны или отрицательны ее координаты по (это косинус угла ) и по (это синус угла ).

    Принято использовать две единицы измерения углов: градусы и радианы. Перевести градусы в радианы просто: градусов, то есть полный круг, соответствует радиан. На нашем рисунке подписаны и градусы, и радианы.

    Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол — это угол величиной в , который отложили от положительного направления оси по часовой стрелке.

    Легко заметить, что

    Углы могут быть и больше градусов. Например, угол — это два полных оборота по часовой стрелке и еще . Поскольку, сделав несколько полных оборотов по окружности, мы возвращаемся в ту же точку с теми же координатами по и по , значения синуса и косинуса повторяются через . То есть:

    где — целое число. То же самое можно записать в радианах:

    Можно на том же рисунке изобразить ещё и оси тангенсов и котангенсов, но проще посчитать их значения. По определению,

    Видео:10 класс, 11 урок, Числовая окружностьСкачать

    10 класс, 11 урок, Числовая окружность

    Синус, косинус и тангенс угла 15 градусов

    15 градусов на окружности

    Как найти значения тригонометрических функций для угла 15 градусов

    Найдем значения синуса, косинуса и тангенса для угла 15 градусов аналитическим способом.
    На первый взгляд, нахождение значений синуса, косинуса и тангенса для угла 15 градусов — задача сложная. Однако, это не совсем так.
    Нам на помощь придут формулы преобразования двойного угла тригонометрических функций.

    Дело в том, что мы можем представить угол в 30 градусов, как двойной угол 15 градусов ( 2 * 15 ).

    Тогда, отталкиваясь от тождества:
    cos 2α = 1 — 2sin 2 α

    Принимаем двойной угол как 2 * 15 градусов, тогда
    cos 30 = 1 — 2sin 2 15
    sin 2 15 = ( 1 — cos 30 ) / 2

    Значение косинуса для угла 30 градусов легко вычислить. Оно равно √3/2
    sin 2 15 = ( 1 — √3/2 ) / 2
    sin 15 = √ (( 1 — √3/2 ) / 2 )
    верхнюю часть дроби под корнем приведем к общему знаменателю (2)
    sin 15 = √ (( (2 — √3) /2 ) / 2 ) = √( (2 — √3) / 4 )
    теперь у нас одна дробь под знаком корня. Умножим числитель и знаменатель на два
    sin 15 = √( (2 — √3) / 4 ) = √( (4 — 2√3) / 8 )
    самый интересный момент, мы можем представить 4 — 2√3 как (√3-1) 2
    тогда
    sin 15 = √( (√3-1) 2 / 8 ) = (√3-1)/ √8 = (√3-1)/ (2√2)

    путем несложных агебраических преобразований получаем:

    15 градусов на окружности

    Как видно из примера, значения тригонометрических функций углов синуса, косинуса и тангенса 15 градусов могут быть получены путем несложных тригонометрических преобразований с использованием тригонометрических тождеств преобразований двойных углов и половин заданных углов.

    См. также полную таблицу значений тригонометрических функций (таблицу синусов, косинусов и тангенсов).

    Ниже приведены также значения тригонометрических функций для угла 15 градусов в виде десятичной дроби с четырьмя знаками после запятой.

    Видео:2023 На окружности с центром в точке О отмечены точки А и Б так что угол аоб равен 45Скачать

    2023 На окружности с центром в точке О отмечены точки А и Б так что угол аоб равен 45

    Тригонометрия простыми словами

    Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».

    Тригонометрические функции связаны с соотношениями сторон в прямоугольном треугольнике:

      15 градусов на окружности
    • Синус угла – отношение противолежащего катета к гипотенузе;
    • Косинус угла – отношение прилежащего катета к гипотенузе;
    • Тангенс угла – отношение противолежащего катета к прилежащему;
    • Котангенс угла – отношение прилежащего катета к противолежащему.

    Или в виде формул:

    Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).

    Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.

    15 градусов на окружности

    Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.

    15 градусов на окружности

    Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.

    Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.

    Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.

    Значения тригонометрических функций
    для первой четверти круга (0° – 90°)

    30°45°60°90°
    sin01√3
    ctg√31

    Принцип повтора знаков тригонометрических функций

    15 градусов на окружности

    Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.

    В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.

    Например, значения тригонометрических функций для углов 270° и -90° равны.

    15 градусов на окружности

    Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.

    Видео:Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

    Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

    Тригонометрический круг

    Углы в радианах

    Для математических вычислений тригонометрических функций используются углы не в градусах, а в радианах. Что такое радиан? Угол в радианах равен отношению длины дуги окружности к радиусу. Полный круг в 360° соответствует длине окружности 2 π r. Следовательно 360° в радианах равно 2 π , а 180° равно π радиан.

    Как преобразовывать градусы в радианы? Нужно значение в градусах разделить на 180° и умножить на π .

    Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.

    📽️ Видео

    Длина окружности. Площадь круга - математика 6 классСкачать

    Длина окружности. Площадь круга - математика 6 класс

    Всё про углы в окружности. Геометрия | МатематикаСкачать

    Всё про углы в окружности. Геометрия  | Математика

    Длина окружности. Математика 6 класс.Скачать

    Длина окружности. Математика 6 класс.

    Построение углов заданной градусной мерыСкачать

    Построение углов заданной градусной меры

    Деление окружности на 12 равных частейСкачать

    Деление окружности на 12 равных частей

    Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

    Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

    🔴 В окружности с центром O отрезки AC и BD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

    🔴 В окружности с центром O отрезки AC и BD ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

    8 класс, 33 урок, Градусная мера дуги окружностиСкачать

    8 класс, 33 урок, Градусная мера дуги окружности

    Деление окружностиСкачать

    Деление окружности

    Скрытые возможности обычного угольника! А вы их знали?Скачать

    Скрытые возможности обычного угольника! А вы их знали?

    🔴 На окружности отмечена точка C. Отрезок AB ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРАСкачать

    🔴 На окружности отмечена точка C. Отрезок AB ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 15 | ШКОЛА ПИФАГОРА

    Прямоугольный треугольник с углом в 15 градусов № 8Скачать

    Прямоугольный треугольник с углом в 15 градусов № 8

    Построение угла с помощью транспортираСкачать

    Построение угла с помощью транспортира

    Построить угол 30°Скачать

    Построить угол 30°

    Как найти, чему равен cos 15 градусов? Тригонометрия 10 класс. Подробное решениеСкачать

    Как найти, чему равен cos 15 градусов? Тригонометрия 10 класс. Подробное решение

    Классный способ для разметки любого угла без транспортира.Скачать

    Классный способ для разметки любого угла без транспортира.
    Поделиться или сохранить к себе: