Звезда ларионов и треугольник ларионов

Трехфазный мостовой выпрямитель — принцип работы и схемы

Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные.

Звезда ларионов и треугольник ларионов

Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра.

Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:

Звезда ларионов и треугольник ларионов

В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора.

Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:

Звезда ларионов и треугольник ларионов

Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже.

Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:

Звезда ларионов и треугольник ларионов

Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.

В данном конкретном случае — шесть фаз постоянного напряжения вместо трех, которые были в однотактной схеме. Вот почему требования к сглаживающему фильтру снижаются, и в некоторых случаях без него можно полностью обойтись.

Звезда ларионов и треугольник ларионов

Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов.

Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа.

Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды — в процессе участвуют одновременно два диода — по одному из каждой группы.

Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.

Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы).

Звезда ларионов и треугольник ларионов

Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими. Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки.

Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения. Вот, взгляните на схему с 12 диодами:

Звезда ларионов и треугольник ларионов

Здесь трехфазный трансформатор содержит две трехфазные вторичные обмотки, причем одна из групп объединена в схему «треугольник», вторая — в «звезду». Количества витков в обмотках групп отличаются в 1,73 раза, что позволяет получить со «звезды» и с «треугольника» одинаковые величины напряжения.

В данном случае сдвиг фаз напряжений в этих двух группах вторичных обмоток относительно друг друга получается равен 30°. Поскольку выпрямители включены последовательно, то выходное напряжение суммируется, и на нагрузке частота пульсаций оказывается теперь в 12 раз большей по отношению к сетевой частоте, при этом уровень пульсаций получается меньшим.

Видео:Трехфазные выпрямителиСкачать

Трехфазные выпрямители

Схема ларионова на диодах для трех фаз

Трехфазный мостовой выпрямитель (рис. 3.2) состоит из трехфазного трансформатора и комплекта диодов, собранных по трехфазной мостовой схеме (схема профессора А.Н. Ларионова).

В схеме выпрямителя используется шесть диодов: VD1. VD6. Три диода (VD1, VD3, VD5) соединены в катодную группу. Их общая точка имеет положительную полярность. Из этих трех диодов проводящим будет тот, на аноде которого в данный момент наиболее высокий положительный потенциал. Три диода (VD2, VD4, VD6) соединены в общую точку анодами и образуют анодную группу.

Их общая точка имеет отрицательную полярность. Из диодов анодной группы проводящим будет тот, на катоде которого наиболее отрицательный потенциал. В каждый момент времени в рассматриваемой схеме выпрямителя, как и в однофазной мостовой схеме, открыты два диода: один – в катодной, а другой – в анодной группах. Каждый диод работает в течение одной трети периода (рис.3.2, г, д), что отражено на графиках для токов катодной (iVDк) и анодной (iVDa) групп.

Звезда ларионов и треугольник ларионов

Рисунок 3.2 – Трехфазный мостовой выпрямитель (схема Ларионова):

а – электрическая принципиальная схема;

б-е – диаграммы напряжений и токов

На рис. 3.2,б изображены кривые мгновенных значений напряжений в фазах вторичных обмоток трансформатора uа, ub, uc а на рис. 3.2, в – кривые выпрямленных напряжения ud и тока id. На интервале t1t2, равном p/3, напряжение фазы a (ua) имеет наибольшее положительное значение и, следовательно, на аноде диода VD1 потенциал наиболее высокий, т.е. диод VD1 открыт. Наибольшее отрицательное значение на этом же интервале имеет напряжение фазы b(ub), т.е. катод диода VD4 имеет наибольший отрицательный потенциал, отпирающий этот диод.

Таким образом, на интервале t1t2 к сопротивлению нагрузки через открытые диоды VD1 и VD4 будет приложено линейное напряжение между точками a и b (uab). Под действием этого напряжения ток будет протекать по цепи: + uа, VD1, Rd, VD4, –ub. В момент t2 (M1 – точка естественной коммутации диодов) мгновенные значения напряжений uв и uс равны, а далее напряжение uc будет более отрицательным. Это приведет к открытию диода VD6. Диод VD1 будет оставаться открытым, так как ua остается положительным.

На интервале t2t3, также равном p/3, будут открыты диоды VD1 и VD6, к сопротивлению нагрузки будет приложено линейное напряжение между точками а и с, и ток будет протекать в том же направлении по цепи: +uа, VD1, Rd, VD6, –uс. В момент t3 (точка N1) произойдет переключение диодов VD1 и VD3; диод VD3 откроется, так как uв будет равным ua и далее большим, а диод VD1 закроется.

Поскольку на нагрузку работают две последовательно соединенные вторичные фазовые обмотки трансформатора, то график выпрямленного напряжения ud представляет собой сумму огибающих фазовых напряжений работающих обмоток трансформатора.

Можно сформулировать правило: в схеме в любой момент времени открыты только два вентиля – а именно те, через которые к резистору нагрузки приложено наибольшее линейное напряжение

Период изменения основной гармонической переменной составляющей выпрямленного напряжения, как видно из рис.3.2, в, в 6 раз меньше периода изменения тока сети (Т1 = Тс/6). Следовательно, частота этой гармоники в 6 раз больше частоты тока питающей сети (f1 = 6fc). Несмотря на то, что схема получает электропитание от трехфазного трансформатора, кривая выпрямленного напряжения соответствует шестифазной схеме.

Мгновенное значение выпрямленного напряжения равно линейному напряжению работающих одновременно фаз:

Звезда ларионов и треугольник ларионов(3.3)

Среднее значение выпрямленного напряжения равно:

Звезда ларионов и треугольник ларионов(3.4)

Приняв для удобства за начало отсчета точку О1 на огибающей ud (посредине между t1 = p/6 и t2 = 3p/6 на рис.3.2, в), выразим среднее значение выпрямленного напряжения через функцию косинуса

Звезда ларионов и треугольник ларионов(3.5)

Основные соотношения, показатели качества выпрямления и энергетические параметры трехфазной двухтактной мостовой схемы выпрямления приведены в таблице 3.1.

Достоинства трехфазной двухтактной мостовой схемы выпрямления по сравнению с предыдущими схемами перечислены ниже .

1. Отсутствие вынужденного подмагничивания постоянной составляющей выпрямленного тока, что обеспечивает высокое значение коэффициента использования трансформатора.

2. Малая амплитуда обратного напряжения.

3. Возможность включения вентилей непосредственно в сеть переменного тока (без трансформатора), если напряжение имеет требуемую величину.

Основным недостатком данной схемы выпрямления является необходимость применения шести вентилей вместо трех по сравнению с предыдущей схемой Миткевича.

Трехфазные мостовые выпрямители находят наиболее широкое применение в ИВЭ РЭС при питании от трехфазных первичных источников.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: «Что-то тут концом пахнет». 8526 – Звезда ларионов и треугольник ларионов| 8113 – Звезда ларионов и треугольник ларионовили читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Трехфазная мостовая схема (рис. 1.6, а) обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации (шестипульсная) выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра. Схема приме­няется в широком диапазоне выпрямленных напряжений и мощностей.

Схема трехфазного мостового выпрямителя содержит выпрямительный мост из шести вентилей, в котором последовательно соединены две трехфазные группы. В нижней группе вентили соединены катодами (катодная группа), а в верхней – анодами (анодная группа). Нагрузка подключается между точками соединения катодов и анодов вентилей. Схема допускает соединение как первичных, так и вторичных обмоток трансформатора звездой или треугольником.

Диаграммы напряжений и токов, поясняющие работу идеализированного трехфазного мостового выпрямителя на активную нагрузку, представлены на рис. 1.6 (б, в).

Звезда ларионов и треугольник ларионов

Рис. 1.6. Трехфазная мостовая схема выпрямления (схема Ларионова) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б, в).

Каждая из двух групп выпрямителя повторяет работу трехфазного выпрямителя со средней точкой, поэтому при таком же значении напряжения вторичной обмотки трансформатора Звезда ларионов и треугольник ларионов, как и в трехфазном выпрямителе со средней точкой, среднее выпрямленное напряжениеЗвезда ларионов и треугольник ларионовданного выпрямителя будет в два раза больше или наоборот, при том же значенииЗвезда ларионов и треугольник ларионоввеличинаЗвезда ларионов и треугольник ларионовбудет в два раза меньше [2, 3]:

Звезда ларионов и треугольник ларионов, Звезда ларионов и треугольник ларионов,

что сокращает число витков вторичных обмоток трансформатора и снижает требования к изоляции.

Максимальное обратное напряжение вентиля данной схемы, как и в трехфазной схеме со средней точкой, равно амплитуде линейного вторичного напряжения. Однако ввиду того, что при том же значении Звезда ларионов и треугольник ларионоввеличинаЗвезда ларионов и треугольник ларионовв данной схеме в два раза меньше, соотношение здесь получается более предпочтительным

Звезда ларионов и треугольник ларионов

В схеме трехфазного выпрямителя со средней точкой ток нагрузки создается под действием фазного напряжения вторичной обмотки трансформатора, а в мостовой схеме – под действием линейного напряжения. Ток нагрузки здесь протекает через два вентиля: один – с наиболее высоким потенциалом анода относительно нулевой точки трансформатора из катодной группы, другой – с наиболее низким потенциалом катода из анодной группы. Иными словами, в проводящем состоянии будут находиться те два накрест лежащих вентиля выпрямительного моста, между которыми действует в проводящем направлении наибольшее линейное напряжение.

За период напряжения питания происходит шесть переключений вентилей и схема работает в шесть тактов, в связи с чем ее часто называют шестипульсной. Таким образом, выпрямленное напряжение имеет шестикратные пульсации, хотя угол проводимости каждого вентиля такой же, как в трехфазной схеме со средней точкой, т.е. 2π/3 (120º). Среднее значение тока вентиля соответственно составляет Звезда ларионов и треугольник ларионов. При этом интервал совместной работы двух вентилей равен π/3 (60º).

Кривая тока вторичной обмотки трансформатора определяется токами двух вентилей, подключенных к данной фазе. Один из вентилей входит в анодную группу, а другой – в катодную. Вторичный ток является переменным с паузой между импульсами длительностью π/3 (60º), когда оба вентиля данной фазы закрыты. Постоянная составляющая во вторичном токе отсутствует, в связи с чем поток вынужденного подмагничивания магнитопровода трансформатора в мостовой схеме не создается.

На базе этой схемы возможно построение 12-ти и 24-х пульсных схем выпрямления, которые используют последовательное и параллельное соединение схем при различном сочетании соединений («звезда» или «треугольник») вторичных обмоток трансформатора.

Коэффициент использования трансформатора для различных схем выпрямления при активной нагрузке

Аналогично рассмотренной схеме со средней точкой могут быть определены габаритная мощность и коэффициент использования трансформатора по мощности для любых схем выпрямления при чисто активной нагрузке [2, 3]:

Трехфазная мостовая схема (рис. 1.6, а) обладает наилучшим коэффициентом использования трансформатора по мощности, наименьшим обратным напряжением на диодах и высокой частотой пульсации (шестипульсная) выпрямленного напряжения, что, в некоторых случаях, позволяет использовать эту схему без фильтра. Схема приме­няется в широком диапазоне выпрямленных напряжений и мощностей.

Схема трехфазного мостового выпрямителя содержит выпрямительный мост из шести вентилей, в котором последовательно соединены две трехфазные группы. В нижней группе вентили соединены катодами (катодная группа), а в верхней – анодами (анодная группа). Нагрузка подключается между точками соединения катодов и анодов вентилей. Схема допускает соединение как первичных, так и вторичных обмоток трансформатора звездой или треугольником.

Диаграммы напряжений и токов, поясняющие работу идеализированного трехфазного мостового выпрямителя на активную нагрузку, представлены на рис. 1.6 (б, в).

Звезда ларионов и треугольник ларионов

Рис. 1.6. Трехфазная мостовая схема выпрямления (схема Ларионова) (а) и диаграммы напряжений и токов в ней при работе на активную нагрузку (б, в).

Каждая из двух групп выпрямителя повторяет работу трехфазного выпрямителя со средней точкой, поэтому при таком же значении напряжения вторичной обмотки трансформатора Звезда ларионов и треугольник ларионов, как и в трехфазном выпрямителе со средней точкой, среднее выпрямленное напряжениеЗвезда ларионов и треугольник ларионовданного выпрямителя будет в два раза больше или наоборот, при том же значенииЗвезда ларионов и треугольник ларионоввеличинаЗвезда ларионов и треугольник ларионовбудет в два раза меньше [2, 3]:

Звезда ларионов и треугольник ларионов, Звезда ларионов и треугольник ларионов,

что сокращает число витков вторичных обмоток трансформатора и снижает требования к изоляции.

Максимальное обратное напряжение вентиля данной схемы, как и в трехфазной схеме со средней точкой, равно амплитуде линейного вторичного напряжения. Однако ввиду того, что при том же значении Звезда ларионов и треугольник ларионоввеличинаЗвезда ларионов и треугольник ларионовв данной схеме в два раза меньше, соотношение здесь получается более предпочтительным

Звезда ларионов и треугольник ларионов

В схеме трехфазного выпрямителя со средней точкой ток нагрузки создается под действием фазного напряжения вторичной обмотки трансформатора, а в мостовой схеме – под действием линейного напряжения. Ток нагрузки здесь протекает через два вентиля: один – с наиболее высоким потенциалом анода относительно нулевой точки трансформатора из катодной группы, другой – с наиболее низким потенциалом катода из анодной группы. Иными словами, в проводящем состоянии будут находиться те два накрест лежащих вентиля выпрямительного моста, между которыми действует в проводящем направлении наибольшее линейное напряжение.

За период напряжения питания происходит шесть переключений вентилей и схема работает в шесть тактов, в связи с чем ее часто называют шестипульсной. Таким образом, выпрямленное напряжение имеет шестикратные пульсации, хотя угол проводимости каждого вентиля такой же, как в трехфазной схеме со средней точкой, т.е. 2π/3 (120º). Среднее значение тока вентиля соответственно составляет Звезда ларионов и треугольник ларионов. При этом интервал совместной работы двух вентилей равен π/3 (60º).

Кривая тока вторичной обмотки трансформатора определяется токами двух вентилей, подключенных к данной фазе. Один из вентилей входит в анодную группу, а другой – в катодную. Вторичный ток является переменным с паузой между импульсами длительностью π/3 (60º), когда оба вентиля данной фазы закрыты. Постоянная составляющая во вторичном токе отсутствует, в связи с чем поток вынужденного подмагничивания магнитопровода трансформатора в мостовой схеме не создается.

На базе этой схемы возможно построение 12-ти и 24-х пульсных схем выпрямления, которые используют последовательное и параллельное соединение схем при различном сочетании соединений («звезда» или «треугольник») вторичных обмоток трансформатора.

Коэффициент использования трансформатора для различных схем выпрямления при активной нагрузке

Аналогично рассмотренной схеме со средней точкой могут быть определены габаритная мощность и коэффициент использования трансформатора по мощности для любых схем выпрямления при чисто активной нагрузке [2, 3]:

Видео:💡 ТРЁХФАЗНЫЙ ВЫПРЯМИТЕЛЬ Для самодельных генераторов Звезда ЛарионоваСкачать

💡 ТРЁХФАЗНЫЙ ВЫПРЯМИТЕЛЬ Для самодельных генераторов Звезда Ларионова

Нулевая схема выпрямления трехфазного тока

Дата публикации: 17 июля 2013. Категория: Статьи.

Несмотря на широчайшее распространение трехфазного тока, в ряде важных областей техники нельзя обойтись без постоянного тока. Это относится, например, к электролизным установкам металлургических заводов и электрической тяге.

Сравнительно недавно постоянный ток получали от двигателей-генераторов. Современным способом получения постоянного тока является непосредственное выпрямление переменного тока с помощью полупроводниковых (селеновых, германиевых, кремниевых) выпрямителей.

Переход от двигателей-генераторов к непосредственному выпрямлению кроме конструктивных различий (вращающиеся машины заменены неподвижными аппаратами) имеет важную особенность. Она состоит в том, что у двигателя-генератора цепи переменного и постоянного тока электрически изолированы; при непосредственном выпрямлении они связаны, так как вентили, образующие выпрямитель, и вторичные обмотки трансформатора непосредственно соединены. Совершенно ясно, что выпрямленный ток не может быть синусоидальным; он содержит не только переменную, но и постоянную составляющие (смотрите статью «Понятие о магнитном равновесии трансформатора»), что при некоторых схемах выпрямления очень неблагоприятно влияет на работу трансформатора.

С этим сложным вопросом читатели могут ознакомиться в книге Каганова И. Л. «Промышленная электроника», 1968 год. Здесь же в самых общих чертах отмечаются основные положения, необходимые для пояснения видов соединения трансформаторов, питающих выпрямители.

Видео:Шестипульсный Выпрямитель ⭐ Zwezda Larionow и Трансформатор ⚡ МОТСкачать

Шестипульсный Выпрямитель ⭐ Zwezda Larionow и Трансформатор ⚡ МОТ

Системы выпрямления

Выпрямители, преобразующие трехфазный ток в постоянный, являются выпрямителями трехфазного тока независимо от числа фаз вторичной обмотки. Первичная обмотка трансформатора, питающая выпрямитель трехфазного тока, соединяется в звезду, треугольник или зигзаг и получает питание от сети трехфазного тока. Вторичная обмотка может быть трехфазной, шестифазной, двенадцатифазной, что определяет систему выпрямления; трехфазную, шестифазную, двенадцатифазную и так далее.

Звезда ларионов и треугольник ларионов

Рисунок 1. Общие свойства систем и схем выпрямления. Кривые выпрямленного напряжения (а); выпрямление однофазного тока по мостовой схеме (б) и по схеме с нулевым выводом (д); выпрямление трехфазного тока по мостовой схеме (г) и по схеме с нулевым выводом (в).

На рисунке 1, а сверху вниз изображены кривые выпрямленного напряжения при трехфазном (U3), шестифазном (U6) и двенадцатифазном (U12) выпрямлении. Этот рисунок показывает только характер явлений (а не количественные соотношения), иллюстрируя следующее: а) наименьшие пульсации (волнистость) получаются при двенадцатифазном выпрямлении, что хорошо; б) продолжительность анодного тока каждой фазы самая высокая при трехфазном выпрямлении (t3 > t6 > t12); с этой позиции лучше трехфазное выпрямление; в) средние значения выпрямленного напряжения при разных системах выпрямления неодинаковы (U12 > U6 > U3).

Видео:Как Путин жестами показывает охране кого убрать от себя Эксклюзив ВидеоСкачать

Как Путин жестами показывает охране кого убрать от себя Эксклюзив Видео

Принцип работы и схемы

Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные. Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра. Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:

В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора. Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:

Звезда ларионов и треугольник ларионов

Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже. Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:

Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.

Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов. Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа. Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды – в процессе участвуют одновременно два диода — по одному из каждой группы.

Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.

Звезда ларионов и треугольник ларионов

Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы). Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими.

Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки. Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения.

Звезда ларионов и треугольник ларионов

Мостовой тип устройства

Трехфазная мостовая схема выпрямления использует шесть диодов (или тиристоров, если требуется управление). Выходное напряжение характеризуется тремя значениями: минимальным U, средним U и пиковым напряжением. Полноволновой трехфазный выпрямитель похож на мост Гейца. Схема полноволнового трехфазного устройства. Обычный трехфазный выпрямитель не использует нейтраль. Для сети 230 В / 400 В между двумя входами выпрямителя. Действительно, между 2 входами всегда есть составное напряжение U (= 400 В). Неконтролируемое устройство означает, что нельзя отрегулировать среднее выходное U для этого входного U. Неконтролируемое выпрямление использует диоды.

Управляемый выпрямитель позволяет регулировать среднее выходное напряжение, воздействуя на задержки срабатывания тиристора (используется вместо диодов). Эта команда требует сложной электронной схемы.

Диод ведёт себя как тиристор, загружаемый без задержки. Выходное U трехфазного выходного напряжения. Всего 7 кривых: 6 синусоид и красная кривая, соединяющая верхнюю часть синусоид («синусоидальные шапки»). 6 синусоидов представляют собой 3 напряжения, составляющие U между фазами и 3 одинаковыми напряжениями, но с противоположным знаком:

U31 = -U13U23 = -U32U21 = -U12.

Красная кривая представляет U на выходе выпрямителя, то есть на клеммах резистивной нагрузки. Это U не относится к нейтрали. Она плавает. Это U колеблется между 1,5 В max и 1,732 Вmax (корень из 3). Umax — пиковое значение одного напряжения и составляет 230×1,414 = 325 В.

Свойства трехфазного напряжения

Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца. Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.

Среднее значение трехфазного выпрямленного напряжения: avg = 1,654Vmax = 1,654 x (1,414×230) = 538 В. Выходное напряжение трехфазного выходного выпрямителя (зум). 3-фазный полноволновый выпрямитель MDS 130A 400V. 5 терминалов: 3 фазы, + и -. Этот выпрямитель содержит 6 диодов. Таким образом, можно суммировать следующие моменты:

  • 6 диодов, 2 диода на фазу — слабая пульсация по сравнению с одноволновым выпрямителем (мост Гейца);
  • среднее значение выпрямленного напряжения: 538 В для сети 230 В / 400 В;
  • нейтраль не используется трехфазным выпрямителем.

Работа диодного моста

Он состоит из четырёх диодов, и эта конфигурация подключается через нагрузку. Во время положительного полупериода входных сигналов диодов D1 и D2 в прямом направлении смещены, а D3 и D4 обращены назад. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводиться — ток начинает протекать через него, как показано на рисунке ниже на красной линии. Во время отрицательного полупериода входного сигнала AC диоды D3 и D4 смещены вперёд, а D1 и D2 обращены в обратном направлении. Ток нагрузки начинает протекать через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.

В обоих случаях направление тока нагрузки одинаковое, как показано на рисунке одностороннее, что означает DC. Таким образом, при использовании мостового выпрямителя входной ток AC преобразуется в DC. Выход на нагрузке с помощью этого мостового выпрямителя имеет пульсирующий характер, но для получения чистого DC требуется дополнительный фильтр, такой как конденсатор. Такая же операция применима для различных мостовых выпрямителей, но в случае управляемых выпрямителей запускается тиристор, чтобы управлять током для нагрузки.

Режим 1 (от α до π). В положительном полупериоде подаваемого переменного сигнала SC1 T1 и T2 являются прямым смещением и могут быть включены под углом α. Напряжение нагрузки равно положительному мгновенному напряжению питания AC.

Режим 2 (π toπ + α). При wt = π входное питание равно нулю, а после π оно становится отрицательным. Но индуктивность противодействует любым изменениям для поддержания DC нагрузки и в том же направлении.

Видео:Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигательСкачать

Этому не учат, а стоило бы. Чем отличается звезда от треугольника? #звезда #треугольник #двигатель

Схемы выпрямления

Любая система выпрямления может быть осуществлена по нескольким схемам, среди которых наиболее распространены мостовая (рисунки 1, б и г) и схема с нулевым выводом (рисунки 1, в и д) – ее часто называют нулевой схемой. Сравнивая рисунки 1, б и д, а также рисунки 1, в и г, легко видеть, что количество вентилей в мостовых и нулевых схемах неодинаково, но это не то различие, которое нас в данном случае интересует. Интересующее нас принципиальное различие между мостовыми и нулевыми схемами состоит в том, что у первых по первичным и по вторичным обмоткам трансформатора проходит чисто переменный ток, что хорошо 1. В схемах с нулевым выводом по вторичным обмоткам трансформатора проходят однонаправленные токи, создающие однонаправленный поток вынужденного намагничивания. Это плохо, так как поток вынужденного намагничивания сильно повышает индукцию в магнитопроводе трансформатора, вплоть до его насыщения, что увеличивает намагничивающий ток, нарушает магнитное равновесие в трансформаторе, вызывает высшие гармоники (смотрите статью «Понятие о магнитном равновесии трансформатора»).

Видео:Мощность трехфазного напряжении при подключении нагрузки звездой и треугольникомСкачать

Мощность трехфазного напряжении при подключении нагрузки звездой и треугольником

Мостовой трехфазный выпрямитель: схема выпрямления

Первичное применение выпрямителей состоит в выводе источника постоянного тока (DC) из источника переменного тока (AC). Практически все электронные устройства требуют постоянного тока, поэтому выпрямитель трехфазный используются внутри блоков питания очень широкого спектра электронного оборудования.

  • Цепь полного цикла
  • Трехфазная схема выпрямителя
  • Мостовой тип устройства
  • Свойства трехфазного напряжения
  • Однофазное полноволновое устройство
  • Работа диодного моста
  • Сравнение однофазного и трехфазных устройств

Видео:Что такое звезда и треугольник в трансформатореСкачать

Что такое звезда и треугольник в трансформаторе

Схема соединений трансформатора и поток вынужденного намагничивания

Характер и величина потока вынужденного намагничивания определяются схемой соединения обмоток трансформатора и для трехфазных схем состоят в следующем: а) при соединении первичной обмотки в треугольник, а вторичной в звезду в сердечнике трансформатора возникает неизменный по времени однонаправленный поток вынужденного намагничивания; б) при соединении первичной и вторичной обмоток в звезду поток вынужденного намагничивания однонаправлен, но пульсирует, если создающий его ток меняется во времени; в) если вторичная или первичная обмотка соединена в зигзаг, то поток вынужденного намагничивания отсутствует (смотрите пояснения к рисункам 1 и 2, в статье «Схема соединения «Зигзаг»).

При соединении первичной обмотки в звезду, а вторичной в шестифазную звезду поток вынужденного намагничивания каждую шестую часть периода меняет направление. Он проходит по всем стержням вверх (а по воздуху вниз, так как однонаправленные потоки не могут замкнуться в ярме), а через 1/6 периода меняет направление, проходя по всем стержням вниз, а по воздуху вверх. Поток вынужденного намагничивания имеет тройную частоту по сравнению с частотой питающей сети и называется однофазным потоком вынужденного намагничивания.

Видео:схема ЛарионоваСкачать

схема Ларионова

Схема трехфазного мостового неуправляемого выпрямителя

Схема трехфазного мостового выпрямителя (схема Ларионова) и временные диаграммы, характеризующие ее работу, показаны на рис. 4.2. В этой схеме последовательно соединены две трехфазные выпрямительные группы, каждая из которых повторяет работы трехфазного нулевого выпрямителя.

Рис. 4.2. Схема трехфазного мостового неуправляемого выпрямителя (а) и временные диаграммы выпрямителя при L → ∞, (б – и

Вентили схемы образуют две группы: катодную, с общей точкой соединения катодов (вентили 1,3,5) и анодную, с общей точкой соединения анодов (вентили 2,4,6). Нагрузка подключена между точками соединения катодов и анодов вентилей.

Анализ работы схемы проводится при RL-нагрузке, наиболее распространенной на практике. Приняв потенциал общей точки звезды вторичной обмотки трансформатора за нуль, можно считать, что напряжение на нагрузке есть сумма двух 3-х фазных нулевых схем выпрямления, собранных на вентилях катодной и анодной групп

где φd(+) – потенциал катодов вентилей катодной группы;

φd(-) – потенциал анодов анодной группы вентилей.

Из сказанного следует, что в отличие от нулевой схемы, где ток нагрузки создается под действием фазного напряжения, в мостовой схеме ток создается под действием линейного напряжения.

Обратимся к схеме. Ток нагрузки протекает через два вентиля, один из которых расположен в катодной группе, а другой – в анодной группе. Контур тока нагрузки при открытых вентилях 1 и 6 показан на рис 4.2,а

. В катодной группе открыт тот вентиль, напряжение анода которого при положительной полярности относительно нулевой точки (т.е. фазное напряжение) будет наибольшим. В анодной группе открыт вентиль, фазное напряжение которого при отрицательной полярности наибольшее. Таким образом,
в проводящем состоянии находятся те два накрест лежащих вентиля, между которыми действует в проводящем направлении наибольшее линейное напряжение
. Например, на интервале υ1 – υ2 открыты вентили 6 и 1; на интервале υ2 – υ3 – 1 и 2; на интервале υ3 – υ4 – 2 и 4 и т.д. Интервал проводимости каждого вентиля (в катодной и анодной группе) равен Ψ = 2π /3, а интервал совместной работы двух вентилей составляет Ψ1 = π /3. Таким образом,
за период напряжения питающей сети происходит шесть переключений вентилей, в связи с чем схему называют шестипульсной
.

Определим основные соотношения для данной схемы. Разность потенциалов φd(+) и φd(-) определяет напряжение на нагрузке. Кривая φd(+)формируется из участков фазных напряжений положительной полярности катодной группы вентилей, а кривая φd(-) – из участков фазных напряжений отрицательной полярности анодной группы вентилей (рис. 4.2,б). Кривая ud состоит из участков линейных напряжений вторичных обмоток трансформатора. Среднее значение выпрямленного напряжения Ud определяют по среднему напряжению ud за период его повторяемости, равный π /3

Напряжение Ud в мостовой схеме в два раза больше чем в нулевой схеме, поскольку на нагрузке суммируются напряжения двух нулевых выпрямителей. Очевидно, в этом случае требуется вдвое меньшее напряжение U2, равное

В мостовой схеме значительно снижается коэффициент пульсаций выпрямленного напряжения по первой гармонике и увеличивается частота пульсаций. При m = 6 получим:

q1 = 0,057; f(п)1 = mfс = 6×50 = 300 Гц.

Среднее и максимальное значение анодного тока в вентиле определяется равенством (4.3).

При проводящем состоянии двух вентилей схемы, другие четыре вентиля находятся в закрытом состоянии. Кривая обратного напряжения строится также как и для трехфазной нулевой схемы и состоит из участков линейных напряжений вторичных обмоток трансформатора (рис. 4.2, и

). Максимальное (амплитудное) значение обратного напряжения, как и в нулевой схеме, равно Ubmax = . Однако соотношения между Ubmax и Ud в мостовой схеме другие, поэтому максимальное обратное напряжение, прикладываемое к вентилю в закрытом состоянии, в мостовой схеме меньшее

Ubmax = 1,045Ud. (4.14)

В соответствии с (4.14) вентили в трехфазном мостовом выпрямителе выбирают на напряжение приблизительно равное Ud.

Для расчета трансформатора определяют действующие значения вторичного тока I2 и первичного – I1 (рис.4.2,з

). Ток вторичной обмотки трансформатора, определяется токами двух вентилей, подключенных к каждой фазе. Например, ток ι2а состоит из токов вентилей 1 и 4. Вторичный ток является переменным, имеет форму прямоугольных импульсов с амплитудой Id и паузой между импульсами, равной π / 3.
Постоянная составляющая в токе ι2 отсутствует, поэтому вынужденное подмагничивание магнитопровода трансформатора в мостовой схеме также отсутствует.Токи
I1 и I2 определяют из следующих соотношений

В мостовой схеме расчетные мощности первичных и вторичных обмоток и типовая мощность трансформатора равны:

S1 = S2 = Sт = 3 (4.17)

Из (4.17) следует, что трансформатор для трехфазного мостового выпрямителя выбирают на мощность близкую к мощности нагрузки, что также является преимуществом этой схемы.

При сравнении рассматриваемой схемы с трехфазной нулевой схемой, очевидны преимущества мостового трехфазного выпрямителя:

— большее среднее значение выпрямленного напряжения по отношению к фазному напряжению вторичной обмотки трансформатора;

— высокий показатель использования диодов по обратному напряжению ( — мостовая схема, — нулевая схема);

— меньшее значение коэффициента пульсаций мгновенного значения выпрямленного напряжения (q1 = 5,7% — мостовая схема; q1 = 25% — нулевая схема);

— лучшее использование трансформатора, т.е. типовая мощность меньше чем в нулевой схеме;

— отсутствие потока вынужденного подмагничивания.

Видео:Соединение обмоток треугольникомСкачать

Соединение обмоток треугольником

Шестифазное выпрямление при соединении вторичных обмоток трансформатора в двойной зигзаг

основано на том, что при соединении в зигзаг поток вынужденного намагничивания не возникает 2. На каждом стержне трансформатора расположены: первичная обмотка A (B, C) и три секции вторичных обмоток x, a, d (y, b, e; z, c, f), которые принадлежат разным фазам. Обмотки x, y, z образуют внутреннюю звезду, нейтраль которой является отрицательным полюсом выпрямителя. К свободным концам внутренней звезды присоединены обмотки a, b, c, d, e, f, внешние концы которых питают вентили 1 – 6. Общая точка, в которую соединены вентили, служит положительным полюсом выпрямителя.

Звезда ларионов и треугольник ларионов

Рисунок 2. Шестифазное выпрямление в схеме звезда – двойной зигзаг.

Соединениям на рисунке 2, а соответствует векторная диаграмма (рисунок 2, б) электродвижущих сил (э. д. с.) вторичных обмоток, из которой ясны: последовательность работы вентилей 1, 2, …, 6, значение э. д. с. вторичной обмотки E2 (геометрическая разность э. д. с. секций разных фаз), продолжительность работы каждого вентиля 60°.

📸 Видео

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Как работает силовая часть Звезда - ТреугольникСкачать

Как работает силовая часть Звезда - Треугольник

Стрим с Борисом Надеждиным, Алексеем Ракшей и Боженой ИвановойСкачать

Стрим с Борисом Надеждиным, Алексеем Ракшей и Боженой Ивановой

Трёхфазная мостовая схема выпрямления (схема Ларионова)Скачать

Трёхфазная мостовая схема выпрямления (схема Ларионова)

Лекция 25. Преобразование звезды в треугольник.Скачать

Лекция 25. Преобразование звезды в треугольник.

Как работает пусковой переключатель со звезды на треугольникСкачать

Как работает пусковой переключатель со звезды на треугольник

Трёхфазный переменный ток. Соединение "звезда" и "треугольник"Скачать

Трёхфазный переменный ток. Соединение "звезда" и "треугольник"

Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемыСкачать

Преобразование звезды сопротивлений в эквивалентный треугольник. Преобразование мостовой схемы

Соединение звезда и треугольник. Различие между нимиСкачать

Соединение звезда и треугольник. Различие между ними

Как работает трёхфазный диодный мост.Скачать

Как работает трёхфазный диодный мост.

Мост Ларионова, на Шесть или на Восемь диодов, что выбрать для ветряка, и измерение усилия на валуСкачать

Мост Ларионова, на Шесть или на Восемь диодов, что выбрать для ветряка, и измерение усилия на валу
Поделиться или сохранить к себе: