Основные свойства равностороннего треугольника непосредственно следуют из свойств равнобедренного треугольника, частным случаем которого он является.
Свойства равностороннего треугольника
2) Высота, медиана и биссектриса, проведённые к каждой из сторон равностороннего треугольника, совпадают:
AK — высота, медиана и биссектриса, проведённые к стороне BC;
BF — высота, медиана и биссектриса, проведённые к стороне AC;
CD — высота, медиана и биссектриса, проведённые к стороне AB.
Длины всех трёх высот (медиан, биссектрис) равны между собой:
Если a — сторона треугольника, то
3) Точка пересечения высот, биссектрис и медиан называется центром правильного треугольника и является центром вписанной и описанной окружностей (то есть в равностороннем треугольнике центры вписанной и описанной окружностей совпадают).
4) Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, считая от вершин:
5) Расстояние от точки пересечения высот, биссектрис и медиан
до любой вершины треугольника равно радиусу описанной окружности:
6) Расстояние от точки пересечения высот, биссектрис и медиан до любой стороны треугольника равно радиусу вписанной окружности:
7) Сумма радиусов вписанной и описанной окружностей правильного треугольника равна его высоте, медиане и биссектрисе: R+r=BF.
8) Радиус вписанной в правильный треугольник окружности в два раза меньше радиуса описанной окружности:
- Свойства равностороннего треугольника: теория и пример задачи
- Определение равностороннего треугольника
- Свойства равностороннего треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
- Пример задачи
- Ззамечательные точки треугольника — свойства, применение и примеры решения
- Точка пересечения медиан треугольника
- Точка пересечения биссектрис треугольника
- Точка пересечения высот треугольника
- Пример решения задач с построением
- 🔍 Видео
Видео:Урок по теме ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА ГЕОМЕТРИЯ 8 КЛАСССкачать
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Видео:Замечательные точки треуг-ка. 8 класс.Скачать
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Видео:Известна биссектриса равностороннего треугольника. Найти сторону этого треугольника. ОГЭ №16Скачать
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Видео:Равнобедренный треугольник. 7 класс.Скачать
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Видео:Задание 15 ОГЭ. Медиана равностороннего треугольникаСкачать
Ззамечательные точки треугольника — свойства, применение и примеры решения
Замечательные точки треугольника не просто так описываются таким прилагательным. Для многих учеников, а начинают знакомиться с этим понятием в 8 классе, эта тема кажется наиболее интересной и простой в курсе геометрии, поэтому многочисленные теоремы и свойства запоминаются достаточно просто.
Итак, какие же четыре точки называются замечательными? Перечислим их:
точку пересечения медиан треугольника;
точку пересечения биссектрис треугольника;
точку пересечения высот треугольника;
точку пересечения серединных перпендикуляров сторон треугольника.
Все точки обладают своими особенностями и свойствами, про всех есть свои теоремы и следствия из них. Кроме того, существует свойство, которое справедливо сразу для четырёх этих точек. Вне зависимости от того, медиана ли это, биссектриса или высота, все они пересекаются в одной точке.
Замечательные точки характерны не только для треугольников. Например, в трапеции так же четыре замечательные точки.
Теперь рассмотрим основные положения, связанные с замечательными точками треугольника.
Видео:Формулы равностороннего треугольника #shortsСкачать
Точка пересечения медиан треугольника
Из курса геометрии известно определение медианы треугольника.
На данном рисунке она обозначена прямой m, которая исходит из вершины А и заканчивается точкой М, являющейся центром стороны ВС.
Теперь сделаем чертёж треугольника, на котором укажем замечательную точку пересечения медиан.
Для начала постройте абсолютно любой треугольник и обозначьте его буквами А, В и С.
На отрезке АВ отметьте центр С1, на стороне ВС центр А1, на АС центр В1.
Проведите 3 медианы из вершин. Из угла А – медиана АА1,из угла В — медиана ВВ1, из угла С — медиана СС1.
Должно получиться так, как показано на рисунке: три проведённые линии пересекаются в одной точке G (что является их свойством).
Изучим следующее свойство точки пересечения трёх медиан треугольника.
Отрезки медианы треугольника, разделённой замечательной точкой, относятся друг к другу как 2:1. Проследим это свойство на примере используемого нами рисунка:
A1G = 2AG, B1G = 2BG, C1G = 2CG.
Видео:Высота, биссектриса, медиана. 7 класс.Скачать
Точка пересечения биссектрис треугольника
Прежде чем мы приступим к изучению следующей точки, рассмотрим теорему о биссектрисе, проведённой из вершины неразвёрнутого угла, и докажем её.
Рассмотрим пример. Дано:
угол ВАС Точка пересечения серединных перпендикуляров сторон треугольника
Для начала вспомним определение серединного перпендикуляра. Теорема о серединном перпендикуляре:
Сделаем краткое доказательство. Соединим концы отрезка с вершиной серединного отрезка. Докажем равенство полученных треугольников, из чего следует АD = DB.
Построим эту точку.
В треугольнике АВС отмечаем середины его сторон. Проводим три серединных перпендикуляра КО, LO, МО и отмечаем точку их пересечения О.
Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать
Точка пересечения высот треугольника
Проведём три высоты в ∆АВС, все они пересекутся в т. Н. Точка Н по отношению к ∆АВС – ортоцентр.
Свойство высот треугольника:
если все три высоты треугольника или их продолжения пересекаются в одной точке, то это ортоцентр;
СH * HНС
= АH * АНА = ВH * ВНВ.
Ортоцентр может располагаться внутри треугольника, снаружи или совпадать с одной из вершин.
На рисунке показано расположение ортоцентра в остроугольном, прямоугольном и тупоугольном треугольниках.
Видео:Геометрия Равносторонний треугольникСкачать
Пример решения задач с построением
Замечательные точки треугольника замечательные именно потому, что они имеют много полезных для решения задач свойств. Рассмотрим пример решения задачи на эту тему.
Серединный перпендикуляр в ∆АВС, опущенный к АС, пересекает ВС в т. В. Найти BD, DC, если AD = 5 см BC = 9 см.
Сделаем дополнительное построение – серединный отрезок КD к прямой АС. Тогда DK это и высота, и медиана в ∆АВС. Если в треугольнике проведена прямая, которая является высотой и медианой, то он равнобедренный. Значит, AD = DC = 5 см.
ВD =ВС — DC = 4 см.
Ответ: DC = 5 см, ВD = 4 см.
🔍 Видео
Окружность вписанная в треугольник и описанная около треугольника.Скачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать
Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать
Геометрия Задача логиста Разместить точку внутри равностороннего треугольникаСкачать
Геометрия. 7 класс. Теоремы. Т6. Второе свойство равнобедренного треугольника.Скачать
Радиус окружности описанной около равностороннего треугольникаСкачать
ГЕОМЕТРИЯ 8 класс: 4 замечательные точкиСкачать
ПОСТРОЕНИЕ БИССЕКТРИСЫ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать