Задачи на свойство треугольника

Теория и задачи по треугольникам (Часть Ⅰ)

Задачи на свойство треугольникаВертикальные, смежные, соответственные, накрест лежащие углы.

Равенство и подобие треугольников.

Медиана, биссектриса, высота.

Кругом одна геометрия — круг друзей, квадрат врагов, треугольник любящих.

Давай на чистоту: геометрию трудно понимать, если не знаешь определенных теорем и свойств. Я постараюсь донести до тебя понятным языком только необходимое, а ты постарайся разобраться и запомнить!

Что такое луч, прямая, отрезок, угол, треугольник объяснять не буду, иначе кто-то уснет.

Когда небо было ярче, трава зеленее, а ты учился в 7 классе, началось знакомство с геометрией, туда и перенесёмся. Чтобы мы с тобой разговаривали на одном языке, начнем с равных углов.

Смежные углы — два угла, у которых одна сторона общая, а две другие расположены на одной прямой.

Задачи на свойство треугольника

С вертикальными углами проще познакомиться на рисунке:

Задачи на свойство треугольника

Такими дугами показываем равные углы ∠1 = ∠3 (одной дугой) и ∠2 = ∠4 (двумя дугами)

Теперь об углах при параллельных прямых (параллельные прямые — прямые, которые никогда не пересекутся, сколько бы их не продолжать. Лучше представить рельсы у путей на прямом участке):

Задачи на свойство треугольника

Перейдем к фигурам, а именно к равенству треугольников:

1) Треугольники, у которых две стороны и угол между ними соответственно равны двум сторонам и углу между ними другого треугольника, равны между собой.

Задачи на свойство треугольника

Штрихом и двумя штрихами показывают одинаковые стороны, которые равны между собой. Аналогично равные углы показывает одинаковым количеством дуг. Крайне удобно показывать дано сразу на рисунке.

2) Треугольники, у которых два угла и сторона между ними соответственно равны двум углам и стороне между ними другого треугольника, равны между собой.

Задачи на свойство треугольника

3) Треугольники, у которых три стороны соответственно равны трем сторонам другого треугольника, равны между собой.

Задачи на свойство треугольника

Одинаковые треугольники — это идентичные между собой фигуры, только развернутые. У тебя же не возникает вопроса, равны ли эти телефоны? Ты смотришь на форму, модель и сразу говоришь — идентичны. Так же поступай с треугольниками, только на слово тебе никто не поверит, обязательно нужно доказать один из трех признаков, описанных выше.

Задачи на свойство треугольника

А вот эти фигуры какие?

Задачи на свойство треугольника

Подобные! У них одинаковая форма, но разный размер. Тогда определим признаки подобных треугольников:

1) Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.

Задачи на свойство треугольника

2) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, образованные этими сторонами, равны, то такие треугольники подобны.

Задачи на свойство треугольника

3) Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Задачи на свойство треугольника

Важное свойство: если в подобных треугольниках отношение сторон равно k, тогда площади этих треугольников будут относится, как k² (покажу на примере задачи №7).

Давай закрепим теорию в задачах.

Введем секретный шифр:

«Δ» означает треугольник

Задача №1. Дано на рисунке:

Задачи на свойство треугольника

Т.к. треугольники подобны, запишем соотношения сторон против одинаковых углов.

AB II DE, значит ∠A = ∠EDC и ∠B = ∠DEC

Задачи на свойство треугольника

Запишем тогда отношение сторон и выразим нужную сторону EC:

Задачи на свойство треугольника

Задача №2. Дано на рисунке:

Задачи на свойство треугольника

Периметр — это сумма всех сторон. Значит, если периметр отличается в 10 раз, то и стороны тоже в 10 раз.

Задачи на свойство треугольника

Но мы же знаем, что все стороны должны отличаться в 10 раз, тогда:

Задачи на свойство треугольника

Задача №3. Дано на рисунке:

Задачи на свойство треугольника

∠NKM = 90° и ∠NKP = 120°, значит ∠MKP = 30°

∠MKP = ∠KMN, как накрест лежащие углы при KP II NM => ∠KMN = 30°

Задачи на свойство треугольника

А сумма углов в треугольнике 180° , да-да, не всегда, конечно, но Неевклидовая геометрию оставим на другой раз.

∠KNM = 180 − ∠NKM − ∠KMN = 60°

Теперь поговорим о самых распространенных отрезках в треугольнике: высота, биссектриса, медиана.

Высота — отрезок, опускающийся на прямую, содержащую противоположную сторону, под углом 90° (такой угол называется прямым).

Обратите внимание, что именно на прямую. В задаче №5 разберем почему.

Задачи на свойство треугольника

Угол 90° обозначается таким квадратиком у пересечения с прямой.

Биссектриса — луч, делящий угол, из которого выходит, пополам.

Запомнил, как обозначаем одинаковые углы? Одинаковым дугами.

Задачи на свойство треугольника

Медиана — отрезок, опускающийся из вершины треугольника на середину противоположной стороны.

Задачи на свойство треугольника

Задача №4. Дано на рисунке:

Задачи на свойство треугольника

Давай посмотрим, что такое AB? АВ делит угол пополам (одинаковые дуги), значит, это биссектриса => ∠BAD = 20° => ∠CAD = 40°

В Δ CAD: ∠D = 180°− ∠C − ∠CAD = 50°, тогда

В Δ ВAD: ∠DBA = 180° − ∠D − ∠ВAD = 180° − 50° − 20° = 110°

∠DBA и ∠ABC — смежные (их сумма 180°) => ∠ABC = 180° − 110° = 70°

Задача №5. В ΔABC ∠B = 120°; ∠C = 30°. Из вершины А проведена высота, чему равен угол ∠BAH и ∠BAС?

Хороший рисунок — это 50% успеха, а в этой задаче все 90%. Рисуем треугольник примерно с углом 120°:

Задачи на свойство треугольника

Рисунок получился плохой, а еще проблемы в ΔABH. Сумма углов должна быть 180°, но ∠B = 120° и ∠AHB = 90°, уже 210°! Что-то не так, вернемся к определению высоты — отрезок, опускающийся на прямую, содержащую противоположную сторону, под углом 90°.

Тогда продлим сторону BC, а на нее опустим высоту. Высота получится вне треугольника:

Задачи на свойство треугольника

В ΔBAH: ∠HBA = 60° (смежный с ∠ABC) => ∠BAH = 180° − 60° − 90° = 30°

В ΔABC: ∠BAC = 180° − 120° − 30° = 30°

Получается, что ∠BAC = ∠C = 30°, значит, этот треугольник равнобедренный. А что это такое?

Равнобедренный треугольник — треугольник, у которого две стороны одинаковой длины. Такие стороны называют боковыми, а сторону, которая им не равна, основанием.

Задачи на свойство треугольникаЕсть пара крайне полезных свойств в равнобедренном треугольнике:

1) Углы при основании равнобедренного треугольника равны.

Задачи на свойство треугольника

Против равных сторон лежат равные углы. Верно и обратное: если два угла у треугольника равны, то он равнобедренный

2) Медиана, проведенная к основанию треугольника, также является биссектрисой и высотой.

Задачи на свойство треугольника

А что будет, если еще и третья сторона получится той же длины? Тогда этот треугольник равносторонний или правильный.

Задачи на свойство треугольника

Задачи на свойство треугольника

А чему равен каждый угол в равностороннем треугольнике? Сумма 180°, но все углы равны, они лежат против одинаковых сторон. Значит, один угол будет равен 180°/3 = 60°

А есть еще какие-то треугольники? Есть прямоугольный.

Задачи на свойство треугольника

Прямоугольный треугольник — треугольник, у которого один угол равен 90° (прямой угол).

А два угла в треугольнике могут быть по 90°? Нет, тогда третьему углу останется 0°, нарисуешь такой?

1) Катет, лежащий против угла в 30°, равен половине гипотенузы.

Задачи на свойство треугольника

Гипотенуза будет в два раза больше катета и равна 16.

2) Медиана, проведенная из прямого угла, равна половине гипотенузы.

Задачи на свойство треугольника

3) Теорема Пифагора

Задачи на свойство треугольника

Теорема, которая встречается в 60% задач, а если дан прямоугольный треугольник — в 90%.

Задачи на свойство треугольника

Квадрат гипотенузы (стороны против угла в 90°) равен сумме квадратов катетов.

Теорема Пифагора — это частный случай теоремы косинусов, но о ней мы потом поговорим.

Задача №6. Дано на рисунке:

Задачи на свойство треугольника

В ΔABC равнобедренный: ∠BAC = ∠BCA = 30°

Опустим высоту из вершины В:

Задачи на свойство треугольника

В равнобедренном треугольнике высота так же будет являться биссектрисой и высотой, значит AH = 18.

В ΔABH ∠A = 30°, скажем что BH = a, тогда AB = 2a. (против угла в 30° лежит катет в два раза больше гипотенузы)

В ΔABH по т. Пифагора:

Задачи на свойство треугольника

Задача №7. ΔMNK ∼ ΔM₁N₁K₁. Площадь ΔMNK = 75, а площадь ΔM₁N₁K₁ = 225. Стороны соотносятся по названию. M₁N₁ = 9, чему равна MN

Вспомним про коэффициент подобия в площадях треугольника: если в подобных треугольниках отношение сторон равно k, тогда площади этих треугольников будут относится, как k²:

225/75 = 3 = k² => k = √3

M₁N₁/MN = k => MN = M₁N₁/k = 9/√3 = 3√3

Отлично, поздравляю тебя с Beginner ом по геометрии.

Если нашел опечатку, или что-то непонятно − напиши.

Видео:7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

Задачи на свойство треугольника

Наглядная геометрия 7 класс. Ключевые задачи по теме Треугольники

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

Запомните!

1. Признаки равенства треугольников.

  • 1-й. По двум сторонам и углу между ними.
  • 2-й. По стороне и двум прилежащим к ней углам.
  • 3-й. По трем сторонам.

2. Свойство углов равнобедренного треугольника.

Углы при основании равнобедренного треугольника равны.

3. Обратная теорема.

Если два угла треугольника равны, то треугольник равнобедренный.

4. Свойство биссектрисы равнобедренного треугольника.

Биссектриса, высота и медиана равнобедренного треугольника, проведенные из вершины к основанию, совпадают.

5. Признаки равнобедренного треугольника. Треугольник является равнобедренным, если:

  • а) высота является и медианой;
  • б) высота является и биссектрисой;
  • в) биссектриса является и медианой.

6. Теорема о свойстве точек серединного перпендикуляра.

  • Любая точка серединного перпендикуляра равноудалена от концов отрезка.
  • Если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре к нему.

7. Теорема о пересечении серединных перпендикуляров.

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке — центре описанной около треугольника окружности.

Простые вопросы по теме «Треугольники»

Задачи на свойство треугольника

  1. В треугольнике провели медиану. Сколько треугольников изображено на рисунке?
  2. Если стороны треугольника продлить, то сколько углов всего образуется, не считая развернутых? А считая и развернутые?
  3. Верно ли, что биссектриса треугольника лежит на биссектрисе угла?
  4. Может ли высота треугольника делить сторону пополам?
  5. Может ли биссектриса треугольника быть перпендикулярной стороне треугольника?
  6. Верно ли утверждение: «Биссектриса равнобедренного треугольника является высотой и медианой»?
  7. Является ли любой равнобедренный треугольник равносторонним?
  8. Является ли любой равносторонний треугольник равнобедренным?
  9. Может ли биссектриса некоторого равнобедренного треугольника, проведенная к боковой стороне, быть медианой?
  10. Может ли высота треугольника быть равна его медиане, проведенной из той же вершины?
  11. Может ли биссектриса треугольника быть равна его высоте, проведенной из той же вершины?
  12. Существует ли треугольник, периметр которого в 3 раза больше одной из сторон?
  13. Если медиана образует равные углы с соседними сторонами треугольника, то какой угол она образует с третьей стороной?
  14. Что для студентов означает слово «медиум»?
  15. Сколько всего теорем в данной теме?

Непростые вопросы по теме «Треугольники»

Задачи на свойство треугольника

16* В треугольнике провели 2 медианы. Сколько треугольников изображено на рисунке?
17* В треугольнике провели 3 медианы. Сколько треугольников изображено на рисунке?
18* Может ли в треугольнике высота являться медианой, но не являться биссектрисой?
19* Как звучит теорема о свойстве углов равнобедренного треугольника в форме «Если …, то …»?
20* Как звучит утверждение, обратное теореме о свойстве углов равнобедренного треугольника, в форме «Если …, то …»?
21* Может ли медиана треугольника равняться соседней стороне?
22* Может ли биссектриса треугольника равняться соседней стороне?
23* Может ли высота треугольника равняться соседней стороне?
24* Может ли серединный перпендикуляр к стороне треугольника иметь общую точку с каждой из двух других сторон?
25* Может ли серединный перпендикуляр к стороне треугольника делить противоположный угол треугольника пополам?

Ответы на простые и непростые вопросы

  1. Три. Два маленьких и один данный.
  2. 12; 24.
  3. Да.
  4. Да. В равнобедренном треугольнике.
  5. Да. В равнобедренном треугольнике.
  6. Нет. Только биссектриса, проведенная из вершины к основанию.
  7. Нет.
  8. Да.
  9. Да. Если треугольник равносторонний.
  10. Да. В равнобедренном треугольнике это высота, проведенная к его основанию.
  11. Да. В равнобедренном треугольнике это биссектриса, проведенная к его основанию.
  12. Да. Например, равносторонний.
  13. 90°. Если медиана является биссектрисой, то треугольник равнобедренный и эта медиана является и высотой, проведенной к основанию.
  14. Медиум — студенческий праздник, знаменующий середину учебы.
  15. Тринадцать теорем, включая задачу о пересечении серединных перпендикуляров к сторонам треугольника.

16* 8.
17* 16.
18* Нет. Если высота является медианой, то треугольник равнобедренный и эта высота является и биссектрисой.
19* «Если треугольник равнобедренный, то углы при основании равны». 20* «Если у треугольника два угла равны, то треугольник равнобедренный».
21* Да.
22* Да.
23* Да. В прямоугольном треугольнике.
24* Да. В равнобедренном прямоугольном треугольнике.
25* Да. Если треугольник равнобедренный.

Это конспект по геометрии «Ключевые задачи по теме Треугольники». Выберите дальнейшие действия:

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

Задачи на свойство треугольника

Практикум по решению задач

§ 1. Использование формул планиметрии и тригонометрии

Решение наибольшего числа задач по планиметрии предполагает знание формул планиметрии и тригонометрии. Это прежде всего задачи на решение треугольников, нахождение различных линейных элементов в геометрических фигурах (длин медиан, биссектрис, радиусов окружностей и т. д.), определение углов.

1.1. Задачи на треугольник

При решении вычислительных задач на треугольник нужно знать следующие формулы (рис. 125):

Задачи на свойство треугольника

Задачи на свойство треугольника

где a, b, с – стороны треугольника;

?, ?, ? – противолежащие им углы;

r и R – радиусы вписанной и описанной окружностей;

ha, ma, la – высота, медиана и биссектриса, проведённые к стороне а;

S – площадь треугольника;

Задачи на свойство треугольника

Иногда применяют формулу

Задачи на свойство треугольника

а также формулу расстояния между центрами описанной и вписанной окружностей:

Задачи на свойство треугольникаПримеры решения задач

1. Определите вид треугольника (остроугольный, тупоугольный или прямоугольный) со сторонами 8, 6 и 11 см (рис. 126). (1)

Задачи на свойство треугольника

Решение. Обозначим больший угол треугольника через ?. Очевидно, что он лежит напротив стороны в 11 см, так как в треугольнике больший угол лежит против большей стороны. По теореме косинусов 112= 82+ 62– 2?8?6?cos ?;

cos ? = -7/32 ВС, то n > 1. Следовательно, уравнение (2) является квадратным. Его дискриминант равен (n + 1)2– 4(n – 1)2= – 3n2+ 10n – 3.

Уравнение (2) будет иметь решения, если – 3n2+ 10n – 3 ? 0, т. е. при -1/3 ? n ? 3. Т. к. n – натуральное число, большее 1, то уравнение (2) имеет решения при n = 2 и n = 3. При n = 3 уравнение (2) имеет корень х = 1; при n = 2 уравнение имеет корни

Задачи на свойство треугольника

Ответ: отношение длины АВ к длине АС равно

Задачи на свойство треугольника

при n = 2; равно 1 при n = 3; при остальных n решений нет.

Задачи для самостоятельного решения

10. В треугольнике ABC высота AD на 4 см меньше стороны ВС. Сторона АС равна 5 см. Найдите периметр треугольника ABC, если его площадь равна 16 см2. (1)

11. Докажите, что для любого треугольника выполняется равенство:

Задачи на свойство треугольника

где ha, hb и hc – высоты треугольника, а r – радиус вписанной окружности. (2)

12. Основание треугольника равно ?2. Найдите длину отрезка прямой, параллельной основанию и делящей площадь треугольника пополам.(2)

13. Найдите площадь треугольника по стороне а и прилежащим к ней углам ? и ?. (2)

14. В треугольнике ABC длина высоты BD равна 6 см, длина медианы СЕ равна 5 см, расстояние от точки пересечения отрезков BD и СЕ до стороны АС равно 1 см. Найти длину стороны АВ. (3)

15. В треугольнике ABC высота BD равна 11,2, а высота АЕ равна 12. Точка Е лежит на стороне ВС, и BE: ЕС = 5:9. Найти длину стороны АС. (3)

16. В треугольнике ABC длина стороны АС равна 3, ?ВАС = ?/6 и радиус описанной окружности равен 2. Доказать, что площадь треугольника ABC меньше 3. (3)

17. В треугольнике ABC медианы, проведенные к сторонам АС и ВС, пересекаются под прямым углом. Длина стороны АС равна b, длина стороны ВС равна а. Найти длину стороны АВ. (3)

1.2. Задачи на равнобедренный и равносторонний треугольники

К задачам на равнобедренный треугольник применимы все формулы п. 1.1 этой главы, разве что во всех формулах b = с, ? = ?.

В случае равностороннего треугольника формулы значительно упрощаются, т. к. а = b = с, ? = ? = ? = 60°. Тогда

Задачи на свойство треугольника

длины всех медиан, высот и биссектрис равны

Задачи на свойство треугольникаПримеры решения задач

18. Один из углов равнобедренного треугольника равен 120°. Найдите отношение сторон треугольника (рис. 134). (1)

Задачи на свойство треугольника

Решение. Обозначим основание треугольника через b, боковые стороны через а (см. рис.). По теореме косинусов

Задачи на свойство треугольника

Тогда отношения сторон треугольника а: а: в = 1:1:?3.

19. Найдите площадь круга, описанного вокруг равностороннего треугольника со стороной а (рис. 135). (1)

Задачи на свойство треугольника

Решение. Обозначим сторону треугольника через а. Тогда по теореме синусов имеем:

Задачи на свойство треугольникаЗадачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

20. Основание равнобедренного треугольника равно 4?2, медиана боковой стороны равна 5. Найдите длину боковой стороны (рис. 136). (2)

Задачи на свойство треугольника

Решение. Можно воспользоваться готовой формулой длины медианы:

Задачи на свойство треугольника

Обозначим АВ через 2х, тотда ВМ = МС = х (см. рис.).

Задачи на свойство треугольника

Задачу можно решить по-другому. Из ?ABC по теореме косинусов:

Задачи на свойство треугольника

Далее, по той же теореме косинусов из ?АМВ:

Задачи на свойство треугольника

21. На основании равнобедренного треугольника, равном 8 см, как на хорде, построена окружность, касающаяся боковых сторон треугольника. Найдите радиус окружности, если длина высоты, опущенной на основание треугольника, равна 3 см (рис. 137). (2)

Задачи на свойство треугольника

Решение. Пусть данный треугольник ABC, где АВ = ВС; ВК = 3; АК = КС = 4 (см. рис.). Угол ОВС обозначим через ?. Из треугольника ВКС по теореме Пифагора находим:

Задачи на свойство треугольника

Из того же треугольника следует: tg ? = 4/3. Радиус окружности R = ОС найдём из треугольника ВСО:

Задачи на свойство треугольника

Задачи для самостоятельного решения

22. В равнобедренном треугольнике боковая сторона равна 12, а угол при вершине – 120°. Определите высоту треугольника. (1)

23. В равнобедренном треугольнике основание и опущенная на него высота равны 4. Найдите площадь описанного круга. (1)

24. В равнобедренном треугольнике высота равна 8, а основание относится к боковой стороне, как 6:5. Найдите радиус вписанной окружности. (1)

25. Длина окружности, описанной около равностороннего треугольника, равна 4. Найдите площадь заштрихованного сектора (рис. 138). (2)

Задачи на свойство треугольника

26. Докажите, что сумма расстояний от любой точки равностороннего треугольника до его сторон равна длине высоты треугольника. (2)

1.3. Задачи на прямоугольный треугольник

Для прямоугольного треугольника с катетами а, b и гипотенузой с, помимо общих формул (см. п. 1.1 этой главы), характерны следующие соотношения:

Задачи на свойство треугольника

(центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы); а = csin ? = ccos ? = btg? = bctg?.

Примеры решения задач

27. В прямоугольном треугольнике ABC, где угол АСВ = 90°, проведена высота CD. Известно, что угол СВА = 30°.

Найдите АВ/BD (рис. 139). (1)

Задачи на свойство треугольника

Решение. Пусть АВ = а; тогда из ?ABC получаем: АС = a/2 (катет, лежащий напротив угла в 30°, равен половине гипотенузы). Далее, ?ACD = ?СВА = 30°, так как эти углы имеют взаимноперпендикулярные стороны. Из ?ACD следует:

Задачи на свойство треугольника

28. Периметр прямоугольного треугольника равен 24 см, а его площадь равна 24 см2. Найдите площадь описанного около треугольника круга (рис. 140). (2)

Задачи на свойство треугольника

Решение. Пусть а, b – длины катетов треугольников. Тогда длина гипотенузы равна

Задачи на свойство треугольника

Периметр треугольника равен

Задачи на свойство треугольника

а площадь 1/2 аb. Получаем систему уравнений:

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

Так как центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, то радиус окружности

Задачи на свойство треугольника

29. На катете АС прямоугольного треугольника ABC как на диаметре построена окружность, которая пересекает гипотенузу АВ в точке К. Найти площадь треугольника СКВ, если длина катета AС равна b и величина угла ABC равна ? (рис. 141). (3)

Задачи на свойство треугольника

Решение. Пусть ABC – данный в условии задачи треугольник. Так как АС – диаметр окружности, то угол СКА прямой и треугольник СКА прямоугольный. Поскольку величина угла САК равна 90° – ?, то величина угла КСА равна ?. Из прямоугольного треугольника СКА имеем, что СК = bcos ?. Из прямоугольного треугольника СКВ находим ВК = СК ctg? = bcos ? ctg?. Но тогда площадь треугольника СКВ равна

Задачи на свойство треугольника

Задачи на свойство треугольника

30. В треугольнике ABC угол А прямой, величина угла В равна 30°. В треугольник вписана окружность, радиус которой равен ?3. Найти расстояние от вершины С до точки N касания этой окружности с катетом АВ (рис. 142). (3)

Задачи на свойство треугольника

Решение. Пусть ABC – прямоугольный треугольник, удовлетворяющий условию задачи. Обозначим через О центр окружности, вписанной в этот треугольник, а через M и N – точки касания этой окружности соответственно с катетами AС и АВ. Поскольку радиус, проведенный в точку касания, перпендикулярен касательной, то ОМ ? АС и ON ? АВ. Так как угол А прямой, то четырёхугольник AMON – прямоугольник. Отсюда следует, что AM = ON = ?3 и AN = OM = ?3. Рассмотрим треугольник ОМС. Это прямоугольный треугольник, у которого ?ОСМ = 1/2 (?АСВ) = ?/6. Так как ОМ = ?3 то МС = QM ? ctg ?/6 = 3. Но тогда AC = AM + МС = ?3 + 3. Из прямоугольного треугольника ANC находим, что

Задачи на свойство треугольника

Задачи на свойство треугольникаЗадачи для самостоятельного решения

31. В прямоугольном равнобедренном треугольнике гипотенуза равна 12 см. Определите высоту треугольника, опущенную из прямого угла. (1)

32. В прямоугольном треугольнике ABC даны: длина катета ВС, равная 36, и косинус угла ВАС, равный 8/17. Найдите длину другого катета АС и площадь треугольника. (1)

33. Площадь равностороннего треугольника, построенного на гипотенузе прямоугольного треугольника, вдвое больше площади последнего. Определите углы прямоугольного треугольника. (2)

34. В прямоугольном треугольнике высота, опущенная из вершины прямого угла, делит гипотенузу на отрезки длиной 9 и 16. Найдите радиус вписанной в треугольник окружности. (2)

35. В треугольнике ABC угол ВАС прямой, длины сторон АВ и ВС равны соответственно 1 и 2. Биссектриса угла ABC пересекает сторону АС в точке L, G – точка пересечения медиан треугольника ABC. Что больше, длина BL или длина BG? (2)

36. На плоскости лежит равнобедренный прямоугольный треугольник, у которого катеты имеют длину. Поворотом в этой плоскости данного треугольника вокруг вершины его прямого угла на угол 45° получается другой равнобедренный прямоугольный треугольник. Найти площадь четырехугольника, являющегося общей частью этих двух треугольников. (3)

1.4. Задачи на трапецию

При решении задач на трапецию нужно помнить следующие положения:

Задачи на свойство треугольника

где а, b – длины оснований, h – высота трапеции;

2) Если около трапеции ABCD можно описать окружность, то она равнобокая. Если при этом требуется найти радиус этой окружности, то он совпадает с радиусом окружности, описанной около любого из треугольников: ABC, ABD, ACD, BCD.

3) Если в трапецию ABCD вписана окружность, то AB + CD = BC + AD.

4) Трапецию принято изображать как на рис. 143.

Задачи на свойство треугольника

При нижнем основании оба угла – острые, но она может выглядеть и как на рис. 144.

Задачи на свойство треугольника

Поэтому, например, задача «Одно из оснований трапеции равно 6, боковые стороны трапеции равны ?5 и ?13. Высота трапеции равна 2. Найдите площадь трапеции» имеет 4 решения:16, 14, 10 и 8.

Примеры решения задач

37. В равнобокой трапеции ABCD высоты ВК и CL отсекают на основании AD отрезки АК и LD. Найдите длины этих отрезков, если AD = 19, ВС = 7 (рис. 145). (1)

Задачи на свойство треугольника

Решение. Так как трапеция равнобокая, то треугольники АВК и CLD равны. В самом деле, АВ = CD по условию, ВК = CL как высоты трапеции. Значит, прямоугольные треугольники АВК и CLD равны по гипотенузе и катету. Так как KBCL – прямоугольник, то KL = ВС = 7; АК + LD = AD – KL = 19 – 7 = 12; AK = LD = 6.

38. Углы при основании трапеции равны 60° и 45°, высота трапеции равна 6 см. Найдите боковые стороны трапеции (рис. 146). (1)

Задачи на свойство треугольника

Решение. Построим трапецию ABCD и проведём высоты ВК и СМ. Из прямоугольного ?АВК находим:

Задачи на свойство треугольника

Из прямоугольного ?CMD получаем:

Задачи на свойство треугольника

Ответ: 4?3 см; 6?2 см.

39. Средняя линия трапеции равна 10 и делит площадь трапеции в отношении 3:5. Найдите длины оснований этой трапеции. (2)

Задачи на свойство треугольника

Решение. Рассмотрим трапеции EBCF и AEFD (рис. 147). Введем обозначения: AD = х, ВС = у; высоты трапеций EBCF и AEFD обозначим через h. Так как площадь трапеции равна произведению полусуммы оснований на высоту трапеции, то

Задачи на свойство треугольникаЗадачи на свойство треугольника

Задачи на свойство треугольника

Из свойства средней линии трапеции:

Задачи на свойство треугольника

Таким образом, получаем систему уравнений:

Задачи на свойство треугольника

40. В равнобедренной трапеции даны основания а = 21, b = 9 и высота h = 8. Найдите длину описанной около трапеции окружности (рис. 148; окружность на рисунке не показана). (2)

Задачи на свойство треугольника

Решение. Проведём высоты трапеции ВК и СМ. Так как АВ = CD, то

Задачи на свойство треугольника

Из ?АВК по теореме Пифагора получаем:

Задачи на свойство треугольника

Задачи на свойство треугольника

KD = KM + MD = 9 + 6 = 15. Так как окружность, описанная около трапеции, совпадает с окружностью, описанной около треугольника ABD, то по теореме синусов имеем:

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

41. В выпуклом четырёхугольнике MNLQ углы при вершинах N и L – прямые, а величина угла при вершине М равна arctg2/3. Найти длину диагонали NQ, если известно, что длина стороны LQ вдвое меньше длины стороны MN и на 2 м больше длины стороны LN (рис. 149). (2)

Задачи на свойство треугольника

Решение: Из условия задачи следует, что угол NMQ острый. Пусть QK – высота треугольника MNQ. По условию LN ? MN и LN ? LQ, следовательно, MN||LQ и LN||QK, т. е. четырёхугольник KNLQ – параллелограмм. Тогда QK = LN и NK = LQ. Имеем, пользуясь условием задачи: QK = LN = LQ – 2, КМ = NM – NK = 2LQ – LQ = LQ. В прямоугольном треугольнике QKM отрезки QK и КМ являются катетами, следовательно,

Задачи на свойство треугольника

и, значит, LQ – 2 = 2/3 LQ, откуда LQ = 6 и LN = 4. Из прямоугольного треугольника NLQ, наконец, по теореме Пифагора находим:

Задачи на свойство треугольника

Задачи на свойство треугольника

42. В трапеции ABCD отрезки АВ и DC являются основаниями. Диагонали трапеции пересекаются в точке Е. Найти площадь треугольника, ВСЕ, если АВ = 30 см, DC = 24 см, AD = 3 см и ?DAB = ?/3. (рис. 150). (3)

Задачи на свойство треугольника

Решение. Обозначим через h длину высоты треугольника ABC, опущенной из вершины В на продолжение стороны АС. Так как этот отрезок одновременно является и высотой в треугольнике ВСЕ, то имеем:

Задачи на свойство треугольника

Из полученных равенств находим:

Задачи на свойство треугольника

В треугольниках ABE и CED равны величины соответствующих углов (?АЕВ = ?CED, ?ABE = ?CDE). Значит, эти треугольники подобны и

Задачи на свойство треугольника

Теперь из (1) и (2) находим, что

Задачи на свойство треугольника

Треугольники ABC и ABD имеют общее основание АВ. Поскольку АВ||CD, то их высоты, опущенные соответственно из вершин С и D, имеют равную величину. Поэтому

Задачи на свойство треугольника

Задачи на свойство треугольникаЗадачи для самостоятельного решения

43. Найдите площадь равнобокой трапеции, если ее основания равны 12 и 4 см, а боковая сторона образует с одним из оснований угол в 45°. (1)

44. Меньшее основание равнобедренной трапеции равно высоте и равно h. Острый угол трапеции равен 30°. Найдите периметр трапеции. (1)

45. Длины параллельных сторон трапеции равны 25 и 4, а длины боковых сторон равны 20 и 13. Найдите высоту трапеции. (2)

46. Основания трапеции равны а и b, боковые стороны равны с. Найдите длину диагонали трапеции. (2)

47. Определите длину высоты трапеции, если её основания равны 28 и 16 см, а боковые стороны равны 25 и 17 см. (2)

48. Найдите площадь равнобедренной трапеции, у которой высота равна 10, а диагонали взаимно перпендикулярны. (2)

49. В трапецию ABCD с основаниями AD и ВС и с боковыми сторонами АВ и CD вписана окружность с центром О. Найти площадь трапеции, если угол DAB прямой, ОС = 2 и OD = 4. (3)

1.5. Задачи на параллелограмм

Площадь параллелограмма со сторонами а, b и углом ? между ними вычисляется по формуле S = absin ?. Можно также воспользоваться формулой S = 1/2 d1d2 sin? где d1, d2 – длины диагоналей, ? – угол между ними (или S = aha, где ha – высота). Если в параллелограмм можно вписать окружность, то это ромб. Если около параллелограмма можно описать окружность, то это прямоугольник.

Примеры решения задач

50. В параллелограмме сумма двух противолежащих углов равна 132°. Найдите градусную меру каждого из углов параллелограмма (рис. 151). (1)

Задачи на свойство треугольника

Решение. По условию задачи ?А + ?С = 132°. Но, так как в параллелограмме противоположные углы равны, то ?А = ?С = 132°/2 = 66°. Учтём также, что ?А + ?В = ?С + ?D = 180°. Имеем:?В = ?D = 180° – 66° = 114°.

Ответ: 66°, 114°, 66°, 114°.

51. Одна из диагоналей параллелограмма разбивает его на два равносторонних треугольника со стороной а. Найдите длину другой диагонали (рис. 152). (1)

Задачи на свойство треугольника

Решение. Раз ?ABD и ?BCD – равносторонние, то углы ?BAD = ?BCD = 60°, тогда ?ABC = 120°.

По теореме косинусов из треугольника ABC получаем:

Задачи на свойство треугольника

Задачи на свойство треугольника

52. Найдите площадь параллелограмма, если его диагонали 3 и 5, а острый угол параллелограмма 60° (рис. 153). (2)

Задачи на свойство треугольника

Решение. Обозначим стороны параллелограмма: AD = а, АВ = b, ?BAD = 60°. BD = 3; АС = 5. Очевидно, что ?ABC = 120°. По теореме косинусов из треугольников ABD и АСВ имеем:

Задачи на свойство треугольника

Вычитая первое уравнение из второго, получим 2ab = 16. Тогда площадь будет равна:

Задачи на свойство треугольника

Задачи на свойство треугольникаЗадачи для самостоятельного решения

53. В параллелограмме с периметром 32 см проведены диагонали. Разность между периметрами двух смежных треугольников равна 8 см. Найдите длины сторон параллелограмма. (1)

54. В параллелограмме ABCD длина диагонали BD, перпендикулярной стороне АВ, равна 6. Длина диагонали АС равна 2?22. Найдите длину стороны AD. (1)

55. Параллелограмм ABCD, у которого АВ = 153, AD = 180, BE = 135 (BE – высота), разделен на три одинаковые по площади фигуры прямыми, перпендикулярными AD. На каком расстоянии от точки А находятся точки пересечения этих перпендикуляров с AD? (2)

1.6. Задачи на ромб

Для ромба характерны все формулы для параллелограмма, только а = b.

Примеры решения задач

56. Тупой угол ромба в 5 раз больше его острого угла. Во сколько раз сторона ромба больше радиуса вписанной в него окружности (рис. 154)? (1)

Задачи на свойство треугольника

Решение. Пусть сторона ромба равна а. В ромбе, как и во всяком параллелограмме, сумма внутренних односторонних углов BAD (обозначим этот угол ?А) и ABC (обозначим его ?В) равна 180°. Получаем систему уравнений:

Задачи на свойство треугольника

Радиус r вписанной окружности, как видно из рисунка, равен половине высоты ВН ромба (2r = MN = ВН). Но из ?АВН следует, что

Задачи на свойство треугольника

57. Высота ромба равна 12, а одна из его диагоналей равна 15. Найдите площадь ромба (рис. 155). (2)

Задачи на свойство треугольника

Решение. Для нахождения площади ромба нам нужно знать длину стороны ромба и хотя бы один из его углов. Пусть АВ = а; ?А = ?. Проведём высоту ВН. Из ?АВН находим, что ВН = AB ? sin ?; 12 = asin ?. Из ?ABD по теореме косинусов BD2= АВ2+ AD2– 2AB ? AD ? cos ?; 152= а2 + а2– 2 ? a ? acos ?; 225 = 2а2(1 – cos ?). Получаем систему уравнений:

Задачи на свойство треугольника

Делим первое уравнение на второе:

Задачи на свойство треугольникаЗадачи на свойство треугольника

Задачи для самостоятельного решения

58. Диагональ ромба равна его стороне, ее длина 10 см. Найдите вторую диагональ и углы ромба. (1)

59. В ромб, сторона которого 20 см, вписан круг. Найти площадь круга, если одна диагональ ромба больше другой в 4/3 раза. (2)

60. В ромб с острым углом 30° вписан круг, площадь которого равна Q. Найдите площадь ромба. (2)

1.7. Задачи на прямоугольник

Для прямоугольника справедливы все формулы для параллелограмма, только угол между сторонами равен 90°. Поэтому S = ab = 1/2d2d2 sin?.

Примеры решения задач

61. Прямоугольник вписан в окружность радиуса 5 см. Одна из сторон равна 8 см. Найдите другие стороны прямоугольника (рис. 156). (1)

Задачи на свойство треугольника

Решение. Очевидно, что центр описанной около прямоугольника окружности является точкой пересечения диагоналей прямоугольника. Из рисунка видно, что ОВ = 5, BE = BC/2 = 8/2 = 4.

Тогда по теореме Пифагора находим:

Задачи на свойство треугольника

Ответ: 6 см; 8 см; 6 см.

62. Стороны прямоугольника 5 и 4 см. Биссектрисы углов, прилежащих к большей стороне, делят противолежащую сторону на 3 части. Найдите длины этих частей (рис. 157). (2)

Задачи на свойство треугольника

Решение. Проведем в прямоугольнике ABCD биссектрисы AM и DK (см. рис. 157). Получим:?ВАМ = 1/2 ?BAD = 1/2 ?90° = 45°. Отсюда следует, что ?АВМ – равнобедренный (?ВMA = 45°) и, значит, ВМ = АВ = 4. МС = ВС – ВМ = 5–4 = 1.

Очевидно, что ВК = МС = 1;

КМ = ВС – ВК – МС = 5–1 – 1 = 3.

63. Из всех прямоугольников, вписанных в полукруг, найти прямоугольник наибольшей площади (рис. 158). (3)

Задачи на свойство треугольника

Решение. Обозначив ?АОВ =?, получим: АВ = R sin ?, АО = R cos ?, S = AB ? AD = AB ? 2AO = 2R2sin ? ? cos ?, 0° ОС; значит, точка О лежит по одну сторону с точкой С относительно перпендикуляра к середине отрезка ВС. Отсюда следует, что точка О лежит на луче КС.

Обозначим КО через х и АВ = CD через y. Так как

Задачи на свойство треугольника

Задачи на свойство треугольника

Применяя к прямоугольному треугольнику KOD теорему Пифагора, получаем: OD2= КО2+ KD2или 169 = х2+ 1/2 у2.

Предположим, что КО ? КС или

Задачи на свойство треугольника

тогда х2 ? 1/2 у2(заметим, что числа x и y неотрицательны) и

Задачи на свойство треугольника

т. е. площадь квадрата не превосходит 169, что противоречит условию. Следовательно,

Задачи на свойство треугольника

т. е. КО 0 и, значит, y = 17.

Ответ: длина стороны квадрата равна 17; точка О лежит внутри квадрата.

Задачи для самостоятельного решения

70. Сторона квадрата равна 7 см. Определите диаметр окружности, описанной около квадрата. (1)

71. В квадрат вписан круг, а в полученный круг вписан квадрат. Найдите отношение площадей квадратов. (1)

72. Квадрат со стороной 3 см срезан по углам так, что образовался правильный восьмиугольник. Найдите сторону восьмиугольника. (2)

73. Дан квадрат ABCD. На его сторонах вовне построены равносторонние треугольники ABM, BCN, CDK, DAL. Найдите площадь четырёхугольника MNKL, если АВ = 1. (2)

1.9. Задачи на n-угольник (n > 3)

Для произвольного выпуклого четырёхугольника S = 1/2 d1d2 sin?. Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны, a S = рr, где р – полупериметр, r – радиус вписанной окружности.

Если около четырёхугольника можно описать окружность, то суммы противоположных углов равны по 180°.

Для правильного n-угольника:

Задачи на свойство треугольника

(R и r – радиусы описанной и вписанной окружностей, а – длина стороны правильного n-угольника).

Полезно также помнить, что в правильном шестиугольнике a6 = R.

Примеры решения задач

74. Сторона правильного шестиугольника равна 6. Найдите длину вписанной в него окружности (рис. 162). (1)

Задачи на свойство треугольника

Решение. В правильном шестиугольнике сторона равна радиусу описанной окружности. Значит, треугольник АВО – правильный, угол АВО составляет 60°, a OB = R = 6. Радиусы вписанной в правильный шестиугольник окружности перпендикулярны его сторонам. В частности на рис. показано, что r ? АВ, где r = ОР. Тогда из прямоугольного треугольника ОРВ имеем:

Задачи на свойство треугольникаЗадачи на свойство треугольника

Задачи на свойство треугольника

75. Сколько сторон имеет выпуклый многоугольник, у которого все углы равны, если сумма его внешних углов с одним из внутренних равна 468°? (2)

Решение. Сумма внешних углов выпуклого многоугольника равна 360°, сумма внутренних углов равна 180°(n – 2). Величина угла в правильном n-угольнике равна

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи для самостоятельного решения

76. Сторона правильного шестиугольника равна 14. Найдите сторону равновеликого ему правильного треугольника. (1)

77. В правильный треугольник вписана окружность, а в неё – правильный шестиугольник. Найдите отношение площадей треугольника и шестиугольника. (2)

78. Выпуклый четырёхугольник ABCD описан вокруг окружности с центром в точке О, при этом АО = ОС = 1, ВО = OD = 2. Найти периметр четырёхугольника ABCD. (3)

1.10. Задачи на окружность и круг

При решении задач на окружность и круг применяются следующие формулы:

Задачи на свойство треугольника

если ? выражена в радианах. Sсегмента = Sсектора – Sтреугольника.

Вписанный в окружность угол равен половине центрального угла, опирающегося на ту же дугу.

Примеры решения задач

79. Даны две концентрические окружности. Длина одной из них равна 33?, другой 27?. Найдите ширину кольца (рис. 163). (1)

Задачи на свойство треугольника

Решение. Очевидно, что ширина кольца hкольца = R – r (см. рис). Зная длины окружностей, найдём их радиусы.

Задачи на свойство треугольника

80. Найдите площадь сектора круга с радиусом R = 4 и центральным углом в 30°. (1)

Решение. Площадь сектора с углом в 30° в 36°/3° = 12 раз меньше площади всего круга. Значит, площадь сектора

Задачи на свойство треугольника

81. Две окружности с радиусами R = 3 и r = 1 касаются внешним образом. Найдите расстояния от точки касания окружностей до их общих касательных (рис. 164, а; б). (2)

Задачи на свойство треугольника

Решение. Из рисунка видно, что четырёхугольник АВ02О1 – трапеция. В самом деле, радиусы О1А и О2В перпендикулярны общей касательной АВ, а значит, параллельны друг другу. Проведём среднюю линию EF трапеции АВO2О1. По свойству средней линии трапеции находим

Задачи на свойство треугольника

Легко видеть, что КМ – средняя линия трапеции EВО2F(см. рис. 164, б).

Задачи на свойство треугольника

82. В сектор с центральным углом в 60° вписан круг. При каком радиусе сектора площадь круга равна ? (рис. 165)? (2)

Задачи на свойство треугольника

Решение. Пусть АО = ОВ = ОС = х (см. рис). D – центр вписанного в сектор круга. Тогда ОС – биссектриса ?АОВ и ?СОВ = 1/2 ?АОВ = 1/2 ? 60° = 30°. Из прямоугольного треугольника ODK:

Задачи на свойство треугольника

83. Диаметр окружности радиуса R является основанием правильного треугольника. Вычислите площадь той части треугольника, которая лежит вне данного круга (рис. 166). (2)

Задачи на свойство треугольника

Решение. Как видно из рисунка, треугольники ADO и ОЕС – равносторонние (например, у ?ADO ?А = 60°; АО = OD, значит, ?ADO = 60°).

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

84. На плоскости даны две окружности с радиусами 12 см и 7 см и центрами в точках О1 и О2 касающиеся некоторой прямой в точках М1 и М2 и лежащие по одну сторону от этой прямой. Отношение длины отрезка М1М2 к длине отрезка О1O2 равно

Задачи на свойство треугольника

Вычислить длину отрезка М1М2 (рис. 167). (3)

Задачи на свойство треугольника

Решение. Пусть S1 и S2 – две окружности, удовлетворяющие условию задачи. Поскольку точки М1 и М2 являются точками касания окружностей S1 и S2 с прямой М1М2, то О1М1 ? М1М2 и O2М2 ? М1М2. Соединим центры О1 и O2 этих окружностей и проведём через точку О1 прямую, параллельную прямой М1М2. Пусть точка К будет точкой пересечения прямых O2М2 и прямой, проведённой параллельно прямой М1М2 через точку О1. Получим прямоугольный треугольник O1O2K с гипотенузой O1O2. Применяя к прямоугольному треугольнику О1КO2 теорему Пифагора, имеем:

О1О22= O1K2+ KO22(1)

Задачи на свойство треугольника

Задачи на свойство треугольника

Поскольку КМ2 = О1М1 и КO2 = КМ2 – М2O2, то КO2 = 5 см. Наконец,

Задачи на свойство треугольника

Теперь из равенства (1) с учётом (2) и (3), а также КO2 = 5 см, следует, что 5/4 М1М22= М1М22+ 25, откуда

Задачи на свойство треугольника

Задачи для самостоятельного решения

85. Дуги А1В1 и А2В2 равной длины 1 принадлежат разным окружностям с радиусами R1 и R2. Найдите отношение градусных мер центральных углов, соответствующих этим дугам. (1)

86. Точка лежит вне круга на расстоянии диаметра от центра круга. Найдите угол между касательными, проведенными из данной точки к данному кругу. (1)

87. В пересечение двух равных кругов вписан ромб с диагоналями 12 и 6 см. Найдите радиус окружностей. (2)

88. В равнобедренный треугольник, у которого боковая сторона равна 10 см, а основание 6 см, вписана окружность. Определите расстояние между точками касания, находящимися на боковых сторонах треугольника. (2)

89. Дано круговое кольцо, площадь которого Q. Определите длину хорды большего круга, касательной к меньшему. (2)

90. Круг радиуса

Задачи на свойство треугольника

разделен на два сегмента хордой, равной стороне вписанного в этот круг правильного треугольника. Определите площадь меньшего из этих сегментов. (2)

91. Хорды АВ и АС имеют одинаковую длину. Величина образованного ими вписанного в окружность угла равна ?/6. Найти отношение площади той части круга, которая заключена в этом угле, к площади всего круга. (3)

§ 2. Основные идеи и методы решения планиметрических задач

Если в предыдущем параграфе мы рассматривали задачи, в которых центральное место принадлежит формулам планиметрии и тригонометрии, то теперь перейдем к задачам, где главную роль будут играть не формулы, а теоремы о свойствах и признаках геометрических фигур. Задачи в параграфе разбиты уже не по объекту исследования (треугольник, трапеция, круг и т. д.), а по ведущей идее решения.

2.1. Задачи на вписанную в треугольник окружность

Если в условии задачи говорится об описанной около треугольника окружности, то в большинстве случаев строить её не нужно. И наоборот, когда речь идёт о вписанной в треугольник окружности. Здесь не только нужно строить саму окружность, но и проводить радиусы к точкам касания (перпендикуляры к сторонам), а также соединять центр окружности с вершинами треугольника. При этом образуются равные треугольники.

Примеры решения задач

92. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки длиной 5 и 12 см. Найдите катеты треугольника (рис. 168). (1)

Задачи на свойство треугольника

Решение. Впишем в треугольник ABC окружность и соединим её центр О с вершинами В, С. Проведём также перпендикуляры ОК, ON, ОМ (см. рис.). Они являются радиусами вписанной в треугольник окружности. Из равенства треугольников ВМО и BNO следует, что ВМ = BN = 5. Аналогично, из равенства треугольников ОКС и ONC следует, что КС = NC = 12. Заметим также, что AMOK– квадрат и, значит, AM = АК = r. Получаем, что АВ = АМ + МВ = r + 5, АС = АК + КС = r + 12. По теореме Пифагора получаем: АВ2+ АС2= ВС2.

(r + 5)2+ (r + 12)2= 172;

r2+ 10r + 25 + r2+ 24r + 144 = 289;

2r2+ 34r – 120 = 0;

r2+ 17r – 60 = 0; r = 3.

Катеты равны 5 + r = 8 и 12 + r = 15.

Ответ: 8 см; 15 см.

93. В треугольник вписана окружность с радиусом 4. Одна из сторон треугольника разделена точкой касания на отрезки, длины которых 6 и 8. Найдите длины сторон треугольника (рис. 169). (2)

Задачи на свойство треугольника

Решение. Как и в предыдущей задаче, изобразим вписанную в треугольник окружность и соединим центр окружности О с вершинами треугольника. Проведем также перпендикуляры ОМ, ОТ, ОК, являющиеся радиусами окружности. Получены три пары равных треугольников: OAK и ОAT, ОВМ и ОВТ, ОСМ и ОСК. По условию одна из сторон треугольника разделена точкой касания на отрезки, длины которых 6 и 8. Пусть для определенности эта сторона – ВС и ВМ = 8, МС = 6. Тогда ВТ = ВМ = 8, СК = СМ = 6. Длины отрезков АК и AT обозначим через х. Для нахождения величины х воспользуемся формулой S = рг. По формуле Герона

Задачи на свойство треугольника

Задачи для самостоятельного решения

94. Точка касания окружности, вписанной в равнобедренный треугольник, делит боковую сторону на отрезки в 3 и 4 см, считая от основания. Найдите периметр треугольника. (1)

95. Около окружности описана равнобокая трапеция, у которой боковая сторона точкой касания делится на отрезки 4 и 9 см. Найдите площадь трапеции. (2)

96. В прямоугольный треугольник, периметр которого равен 36 см, вписана окружность. Гипотенуза делится точкой касания в отношении 2:3. Найти длины сторон треугольника. (3)

2.2. Задачи на свойства параллельных прямых

В ряде задач используют свойства параллельных прямых: при пересечении двух параллельных прямых третьей образуются равные углы (рис. 170).

Задачи на свойство треугольника

Квартеты равных углов:?1 = ?4 = ?6 = ?8; ?2 = ?3 = ?5 = ?7.

Особенно часто эти свойства применяются при решении задач на параллелограмм.

Примеры решения задач

97. В параллелограмме ABCD проведена биссектриса угла А, которая пересекает сторону ВС в точке F. Найдите длину BF, если сторона АВ = 11 (рас. 171). (1)

Задачи на свойство треугольника

Решение. Из рисунка видно, что ?BFA = ?FAD (внутренние накрест лежащие при параллельных прямых), но ?BAF = ?FAD по условию, и поэтому ?BFA = ?BAF. Значит, треугольник ABF – равнобедренный, и BF = АВ = 11.

98. В параллелограмме ABCD сторона АВ равна 6 см, а высота, проведенная к основанию AD, равна 3 см. Биссектриса угла BAD пересекает сторону ВС в точке М так, что МС = 4 см. N – точка пересечения биссектрисы AM и диагонали BD. Вычислить площадь треугольника BNM (рис. 172). (3)

Задачи на свойство треугольника

Решение. Пусть АВCD – данный в условии задачи параллелограмм. Проведем через точку N высоту параллелограмма QR. Обозначим через ? величину угла ВАМ; тогда величина угла АМВ равна ?, т. к. ВС||AD и AM – секущая. Следовательно, треугольник АВМ равнобедренный и ВМ = АВ = 6 см, откуда заключаем, что ВС = AD = ВМ + МС = 6 + 4 = 10 см. Поскольку ?ВМА = ?MAD и ?MBN = ?BDA, как накрест лежащие углы при параллельных ВС и AD, то треугольники BMN и AND подобны по двум углам. Так как в подобных треугольниках сходственные стороны пропорциональны сходственным высотам, то из подобия треугольников AND и BNM имеем:

Задачи на свойство треугольника

откуда QN = 9/8 см.

Площадь треугольника BNM равна:

Задачи на свойство треугольника

Задачи для самостоятельного решения

99. В параллелограмме ABCD угол BCD равен 60°, длина стороны АВ равна а. Биссектриса угла BCD пересекает сторону AD в точке N. Найдите площадь треугольника NCD. (1)

100. Периметр параллелограмма равен 90 см и острый угол содержит 60°. Диагональ параллелограмма делит его тупой угол в отношении 1:3. Найдите стороны параллелограмма. (1)

101. В параллелограмме ABCD биссектриса тупого угла В пересекает сторону AD в точке F. Найдите периметр параллелограмма, если АВ = 12 и AF: FD = 4:3. (1)

2.3. Задачи на пропорциональные отрезки

Теорема Фалеса (а также теоремы Чевы и Менелая) применяются в первую очередь тогда, когда в задаче даны соотношения между отрезками. Очень часто при этом приходится проводить дополнительный отрезок. Идеи использования теоремы Фалеса хорошо видны на следующих примерах.

Примеры решения задач

102. Докажите, что медианы в треугольнике делятся в отношении 2:1, считая от вершины (известная теорема школьного курса математики). (2)

Самый простой путь решения (рис. 173):

Задачи на свойство треугольника

Проведем медианы AM и ВК, а также отрезок МТ, параллельный ВК. Имеем: т. к. ВМ = МС, то КТ = ТС. Но тогда АК = КС = 2КТ и, значит, АО: ОМ = АК: КТ = 2, что и требовалось доказать.

103. В треугольнике ABC на стороне ВС взята точка М так, что MB = МС, а на стороне АС взята точка К так, что АК = 3 ? КС. Отрезки ВК и АМ пересекаются в точке О. Найдите AO/OM (рис. 174). (2)

Задачи на свойство треугольника

Решение. Обозначим длину отрезка КС через а, тогда АК = За. Проведём MP||ВК По теореме Фалеса КР = РС = a/2. По теореме о пропорциональных отрезках имеем:

Задачи на свойство треугольника

104. В треугольнике ABC на стороне АВ взята точка К так, что АК: ВК = 1:2, а на стороне ВС взята точка L так, что CL: BL = 2:1. Пусть Q – точка пересечения прямых AL и СК. Найти площадь треугольника ABC, если дано, что площадь треугольника BQC равна 1 (рис. 175). (3)

Задачи на свойство треугольника

Решение. Проведём через точку L прямую LM параллельно прямой СК. Из подобия треугольников MBL и КВС следует, что

Задачи на свойство треугольника

Из подобия треугольников AKQ и AML находим:

Задачи на свойство треугольника

Кроме того, имеем следующие равенства:

Задачи на свойство треугольника

Задачи для самостоятельной работы

105. ВМ: МС = 3:1, АК = КВ. Найдите: SAKO/SABC(рис. 176). (2)

Задачи на свойство треугольника

106. На сторонах АВ и АС треугольника ABC взяты точки M и N, такие, что AM/MB = CN/NA = 1/2.

Отрезки BN и СМ пересекаются в точке К. Найти отношения отрезков BK/KN и CK/KM.(2)

2.4. Задачи на свойства биссектрисы треугольника

Биссектриса треугольника обладает одним замечательным свойством: она делит противолежащую сторону на отрезки, пропорциональные соответствующим боковым сторонам (рис. 177).

с/а = d/b или c/d = a/b.

Задачи на свойство треугольника

Это свойство часто используется в задачах, в которых фигурирует биссектриса треугольника.

Примеры решения задач

107. В треугольнике ABC проведена биссектриса AD. Найдите периметр треугольника ABC, если АС = 4; DC = 2; BD = 3 (рис. 178). (1)

Задачи на свойство треугольника

Решение. По свойству биссектрисы BD/AB = DC/AC; 3/AB = 2/4; АВ = 6.

Периметр треугольника РАВС = 6 + 5 + 4 = 15.

108. Дан треугольник ABC, в котором ?В = 30°, АВ = 4, ВС = 6. Биссектриса угла В пересекает сторону АС в точке D. Определите площадь треугольника ABD (рис. 179). (2)

Задачи на свойство треугольника

Решение. По свойству биссектрисы AD/DC = AB/BC = 4/6 = 2/3.

Пусть AD = 2х; DC = Зх.

Задачи на свойство треугольника

Задачи для самостоятельного решения

109. В треугольнике ABC, где АВ = 6, АС = 4, биссектриса AL и медиана ВМ пересекаются в точке О. Найдите BO/OM (1).

110. Определите стороны треугольника, если медиана и высота, проведённые из вершины одного угла, делят этот угол на три равные части, а сама медиана равна 10 см. (2)

2.5. Задачи на подобие

Два треугольника подобны: по двум углам, по двум сторонам и углу между ними, по трём сторонам. Очень важно в задаче увидеть подобные треугольники или другие подобные фигуры. Для этого нужна хорошая практика решения задач.

При решении задач на прямоугольный треугольник полезно знать, что высота, проведённая из прямого угла, делит его на два подобных треугольника (рис. 180):

Задачи на свойство треугольника

Примеры решения задач

111. Через точки М и К, принадлежащие сторонам АВ и ВС треугольника ABC соответственно, проведена прямая МК, параллельная стороне АС. Найдите длину СК, если ВС = 12, МК = 8 и АС = 18 (рис. 181). (1)

Задачи на свойство треугольника

Решение. Обозначим КС через х. Тогда ВК = 12 – х. Из подобия треугольников ABC и МВК следует: MK/BK = AC/BC; 8/(12 – x) = 18/12; x = 20/3.

112. В прямоугольный равнобедренный треугольник вписан прямоугольник так, что угол прямоугольника совпадает с углом при вершине треугольника, а вершина противолежащего угла лежит на гипотенузе. Докажите, что периметр прямоугольника есть величина постоянная для данного треугольника (рис. 182). (1)

Задачи на свойство треугольника

Решение. Пусть АВ = АС = а, DE = х; AD = у. Тогда DB = а – у; FC = а – х. Треугольник DEB подобен треугольнику FСЕ, значит, DE/DB = FC/FE; x/(a – y) = (a – x)/y; ху2= а2– ау – ах + ху; х + у = а; РADEF = 2(х + у) = 2а, т. е. не зависит от х и у.

113. В прямоугольном треугольнике ABC угол А – прямой. Опущена высота AD, равная ?5. Найдите произведение BD ? DC (рис. 183). (1)

Задачи на свойство треугольника

Решение. Треугольники ADB и ADC подобны (?BAD = ?ACD, ?ABD = ?DAC). Значит, BD/AD = AD/DC; BD ? DC = AD2= (?5)2= 5.

114. В треугольнике ABC проведены высоты AD и СЕ. Докажите, что треугольники ABC и DBE подобны. Чему равен коэффициент подобия (рис. 184)? (2)

Задачи на свойство треугольника

Решение. Из прямоугольного треугольника ВСЕ: BE = ВС ? cos В. Из ?ABD: BD = АВ ? cos В. Значит, две стороны BD и BE треугольника BDE пропорциональны сторонам АВ и ВС треугольника ABC, а угол В (угол между пропорциональными сторонами) у треугольников общий. ?BDE

?ABC по двум сторонам и углу между ними.

Задачи на свойство треугольника

Ответ: kподобия = cos B.

115. В равносторонний треугольник вписана окружность. Этой окружности и сторон треугольника касаются три малые окружности. Найдите сторону треугольника, если радиус малой окружности равен 1 (рис. 185). (2)

Задачи на свойство треугольника

Решение. Так как в равностороннем треугольнике ABC угол ABC = 60°, то ?ОВМ = 30° (см. рис.). Из центров О и О1 проведем перпендикуляры ОМ и О1Т к стороне ВС. По условию О1Т и О1K равны 1. Длины отрезков ОМ и ОК обозначим через R. Из треугольника ВТО1 следует, что ВО1 = О1Т/sin 30° = 1/0,5 = 2. Треугольники ВТО1 и ВМО подобны по двум углам (?BTO1 = ?BMO = 90°; ?OBM – общий). Отсюда следует, что O1T/O1B = OM/OB;

Задачи на свойство треугольника

Теперь мы знаем радиус вписанной в равносторонний треугольник окружности. Осталось найти длину его стороны. Из треугольника ВОМ следует ВМ = OM ? ctg ?ОВМ = 3?3. Тогда ВС = 2ВМ = 6?3.

116. Из одной точки к окружности проведены две касательные. Длина каждой касательной равна 12 см, а расстояние между точками касания 14,4 см. Определите радиус окружности (рис. 186). (2)

Задачи на свойство треугольника

Решение. Пусть ОА и ОВ – касательные к окружности с центром С; А и В – точки касания. Тогда СВ ? ОВ, СА ? ОА. Кроме того, ОС ? АВ и делит эту сторону пополам. ОА = 12 см, AM = 1/2 АВ = 7,2 см.

Задачи на свойство треугольника

?МОА = ?АОС (углы с взаимноперпендикулярными сторонами), значит, ?ОАС подобен ?ОАМ; тогда

Задачи на свойство треугольника

117. Центр О окружности радиуса длиной 3 лежит на гипотенузе АС прямоугольного треугольника ABC. Катеты треугольника касаются окружности. Найти площадь треугольника ABC, если известно, что длина отрезка ОС равна 5 (рис. 187). (3)

Задачи на свойство треугольника

Решение. Пусть ABC – данный в условии задачи треугольник. Обозначим через M и N точки касания окружности соответственно со сторонами АВ и ВС. Соединив эти точки с центром О окружности, получим квадрат MBNO, и поэтому BN = ОМ = 3. Треугольник ONC прямоугольный, в нём ОС = 5, ON = 3. Следовательно,

Задачи на свойство треугольника

Но тогда ВС = NC + NB = 7. Треугольники ONC и ABC подобны, поэтому AB/ON = BC/NC; AB/3 = 7/4; отсюда получаем, что AB = (ON ? BC)/NC = (3 ? 7)/4 = 21/4. Теперь находим S – площадь прямоугольного треугольника ABC:

Задачи на свойство треугольника

Задачи для самостоятельного решения

118. В равнобедренный треугольник вписан параллелограмм так, что угол параллелограмма совпадает с углом при вершине треугольника, а вершина противолежащего угла лежит на основании. Докажите, что периметр параллелограмма есть величина постоянная для данного треугольника. (1)

119. Из точки D, лежащей на катете АС прямоугольного треугольника ABC, на гипотенузу СВ опущен перпендикуляр DE. Найдите длину CD, если СВ = 15, АВ = 9, СЕ = 4. (1)

120. Точка на гипотенузе, равноудаленная от обоих катетов, делит гипотенузу на отрезки длиной 30 и 40 см. Найдите катеты треугольника. (1)

121. В параллелограмме ABCD проведена диагональ BD и отрезок AF (F ? ВС), пересекающий BD в точке О. Известно, что ВО = 6, OD = 18, FB = 4. Определите сторону параллелограмма AD. (1)

122. В острый угол, равный 60°, вписаны две окружности, извне касающиеся друг друга. Радиус меньшей окружности равен 1. Найдите радиус большей окружности. (1)

123. Найдите длину стороны квадрата, вписанного в равнобедренный треугольник с основанием а и боковой стороной b так, что две его вершины лежат на основании, а две другие вершины – на боковых сторонах. (2)

124. В параллелограмме ABCD точка М– середина стороны СВ, N – середина стороны CD. Докажите, что прямые AM и AN делят диагональ BD на три равные части. (2)

125. В трапеции, основания которой равны а и b, через точку пересечения диагоналей проведена прямая, параллельная основаниям. Найдите длину отрезка этой прямой, отсекаемого боковыми сторонами трапеции. (2)

126. В остроугольном треугольнике ABC из вершин А и С на стороны ВС и АВ опущены высоты АР и CQ. Известно, что площадь треугольника ABC равна 18, площадь треугольника BPQ равна 2, а длина отрезка PQ равна 2?2. Вычислите радиус окружности, описанной около треугольника ABC. (3)

2.6. Задачи на вписанные и описанные четырёхугольники

Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны.

Если около четырёхугольника можно описать окружность, то суммы противоположных углов равны 180°.

Примеры решения задач

127. Известно, что в трапецию ABCD с основаниями AD и ВС можно вписать окружность и около неё можно описать окружность, EF – её средняя линия. Известно, что АВ + CD + EF = 18. Найдите периметр трапеции (рис. 188). (1)

Задачи на свойство треугольника

Решение. Так как в трапецию можно вписать окружность, то

Задачи на свойство треугольника

Поскольку около трапеции можно описать окружность, то АВ = CD. Пусть АВ = CD = а; тогда из (1) следует AD + ВС = 2а и

Задачи на свойство треугольника

По условию АВ + CD + EF = 18; тогда с учетом (2) получаем: а + а + а = 18; а = 6. Периметр трапеции PABCD = АВ + CD + AD + BC = 2(АВ + CD) = 4а = 24.

128. Около окружности с диаметром 15 см описана равнобедренная трапеция с боковой стороной, равной 17 см. Найдите основания трапеции (рис. 189). (2)

Задачи на свойство треугольника

Решение. Очевидно, что высота трапеции равна диаметру окружности. Высота ВК = 15 см; из прямоугольного треугольника АВК

Задачи на свойство треугольника

Пусть BС = х, тогда AD = 8 + х + 8 = х + 16. Так как в трапецию вписана окружность, то AD + ВС = АВ + CD; х + 16 + х = 17 + 17; х = 9 см; AD = 9 + 16 = 25 см.

Ответ: 9 см; 25 см.

Задачи для самостоятельного решения

129. Четырёхугольник ABCD описан около окружности с центром О. Найдите сумму углов АОВ и COD. (1)

130. Определите площадь круга, вписанного в прямоугольную трапецию с основаниями а и b. (2)

131. Длины боковых сторон трапеции равны 3 и 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит её на две части, отношение площадей которых равно 5/11. Найдите длины оснований трапеции. (3)

2.7. Задачи на вписанные углы

Вписанный в окружность угол равен половине центрального угла, опирающегося на ту же дугу.

Примеры решения задач

132. Найдите ?ТОК, если О – центр окружности и ?ТЕК = 120° (рис. 190).(1)

Задачи на свойство треугольника

Решение. Так как вписанный угол ТЕК равен половине центрального угла, опирающегося на ту же дугу, то

Задачи на свойство треугольника

133. Дан правильный 30-угольник А1А2 . А30 с центром О. Найдите угол между прямыми ОА3 и А1А4 (рис. 191). (2)

Задачи на свойство треугольника

Решение. Так как многоугольник А1А2 . A30 – правильный, то ?А3ОА4 = 360°/30 = 12°. Далее, ?А3А1А4 = 1/2 ?А3ОА4 = 6° (вписанный угол, опирающийся на дугу А3А4). ?А1ОА3 = 2 ? 12° = 24°;

Задачи на свойство треугольника

Требуемый нам угол х является внешним углом к треугольнику А3А1В. Так как внешний угол треугольника равен сумме внутренних углов, с ним не смежных, то х = 6° + 78° = 84°.

134. В окружность вписан четырёхугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке Е. Прямая, проходящая через точку Е и перпендикулярная к АВ, пересекает сторону CD в точке М. Доказать, что ЕМ – медиана треугольника CED, и найти её длину, если AD = 8 см, АВ = 4 см и ?CDB = ? (рис. 192). (3)

Задачи на свойство треугольника

Решение. Обозначим через К точку пересечения прямых АВ и ЕМ. Поскольку углы CDB и CAB опираются на одну и ту же дугу ВС, то ?CAB = ?CDB = ?. Из равенств ?DCE + CDB = ?/2, ?КЕА + ?САВ = ?/2, следует, что ?DCE = ?КЕА = ?СЕМ. Но это означает, что треугольник СЕМ равнобедренный, т. е. СМ = ЕМ. Далее, ?MED = ?/2 – ?СЕМ = ?/2 – (?/2 – ?) = ?CDB.

Итак, треугольник EMD равнобедренный, или DM = ЕМ. Этим доказано, что СМ = DM или что ЕМ – медиана треугольника CED.

Из прямоугольного треугольника ABE находим

АЕ = АВ ? cos?ЕАВ = АВ ? cos?CAB = 4 ? cos ?.

Далее, из прямоугольного треугольника AED по теореме Пифагора получаем

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольникаЗадачи для самостоятельного решения

135. Окружности с центрами О и О1 касаются внутренним образом. Найдите угол В (рис. 193). (1)

Задачи на свойство треугольника

136. Точка находится внутри круга радиуса 6 и делит проходящую через неё хорду на отрезки длиной 5 и 4. Найдите расстояние от точки до окружности. (2)

137. а) Докажите, что

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

138. Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Вычислить длину диагонали АС, если BD = 2, AB = 1, ?ABD:?DBC = 4:3. (3)

2.8. Задачи на пропорциональность отрезков хорд и секущих окружности

Напомним свойства хорд и секущих (рис. 196).

Задачи на свойство треугольника

Для обоих случаев ОА ? ОВ = ОС ? OD.

В частности, если А совпадает с В (ОА – касательная), то ОА2= ОС ? OD.

Примеры решения задач

139. Дано (рис. 197):

ОА = 4, АВ = 3, CD = 2. Найдите ОС. (1)

Задачи на свойство треугольника

Решение. Пусть ОС = х, тогда ОА ? ОВ = ОС ? OD; 4 ? 7 = х(х + 2);

Задачи на свойство треугольника

Задачи на свойство треугольника

140. Стороны прямоугольника равны а и b. На стороне а, как на диаметре, построена окружность. На какие отрезки окружность делит диагональ прямоугольника (рис. 198)? (2)

Задачи на свойство треугольника

Решение. Из точки С проведена секущая СА и касательная CD к окружности. По известному свойству имеем: СР ? СА = CD 2;

Задачи на свойство треугольника

Задачи на свойство треугольникаЗадача для самостоятельного решения

141. ОА – касательная; ОВ = 4; ВС = 3. Найдите длину ОА (рис. 199). (1)

Задачи на свойство треугольника

2.9. Задачи на использование дополнительных построений, вспомогательных фигур и геометрических преобразований

Задачи с использованием геометрических преобразований, дополнительных построений и вспомогательных фигур достаточно редки в современных школьных учебниках, но именно в этих задачах, на наш взгляд, проявляется красота геометрии. Это не случайно, ведь благодаря проведенной «лишней» линии, осуществленному повороту, построению симметричной фигуры или вспомогательной окружности даже очень сложная задача может решиться «в одну строчку». За примерами далеко ходить не надо.

Примеры решения задач

142. Найдите длину окружности, описанной около трапеции, стороны которой равны а, а, а и 2а (рис. 200). (1)

Задачи на свойство треугольника

Решение. Легко видеть, что трапецию ABCD можно достроить до правильного шестиугольника (см. рис.), но у правильного шестиугольника радиус описанной окружности равен стороне шестиугольника: Rокр = а. Длина окружности l = 2?Rокр = 2?а.

143. Основания трапеции равны 4 см и 9 см, а диагонали равны 5 см и 12 см. Найти площадь трапеции и угол между её диагоналями (рис. 201). (2)

Задачи на свойство треугольника

Решение. Пусть ABCD – данная трапеция, CD = 4 см, АВ = 9 см, BD = 5 см и АС = 12 см. Чтобы известные элементы включить в один треугольник, перенесём диагональ BD на вектор DC в положение СВ’. Рассмотрим треугольник АСВ’. Так как ВВ’CD – параллелограмм, то В’С = 5 см, АВ’ = АВ + ВВ’ = АВ + CD = 13 см. Теперь известны все три стороны треугольника АВ’С. Так как АС2+ В’С2= (АВ’)2= 52+ 122= 132, то треугольник АВ’С – прямоугольный, причем ?АСВ’ = 90°. Отсюда непосредственно следует, что угол между диагоналями трапеции, равный углу АСВ’, составляет 90°. Площадь трапеции, как и всякого четырёхугольника, равна половине произведения диагоналей на синус угла между ними. Отсюда площадь равна 1/2AC ? BD ? sin 90° = 1/2 ? 12 ? 5 ? 1 = 30 см2.

Ответ: 30 см2, 90°.

144. Основание АВ трапеции ABCD вдвое длиннее основания CD и вдвое длиннее боковой стороны AD. Длина диагонали АС равна а, а длина боковой стороны ВС равна b. Найти площадь трапеции (рис. 202). (3)

Задачи на свойство треугольника

Решение. Пусть АВ = 2с, тогда CD = AD = с. Продолжим боковые стороны ВС и AD до пересечения их в точке Е. Получим треугольник ВАЕ. Так как CD = 1/2АВ, то CD – средняя линия треугольника ABE. Отсюда получаем, что СЕ = ВС = b и DE = AD = с. Получилось, что АВ = АЕ. Следовательно, треугольник ВАЕ равнобедренный и АС – его медиана. Но в равнобедренном треугольнике медиана, проведённая к основанию, является высотой, поэтому площадь треугольника ВАЕ можно вычислить так:

Задачи на свойство треугольника

Далее, т. к. треугольники DCE и ABE подобны с коэффициентом подобия k = 1/2, то площадь треугольника DCE равна 1/4 площади треугольника ABE (отношение площадей подобных треугольников равно квадрату коэффициента подобия). Площадь трапеции, таким образом, равна 3/4 площади треугольника ABE, то есть равна 3/4аb

145. Внутри равностороннего треугольника ABC дана точка М, такая, что АМ = 1, ВМ = ?3 и СМ = 2. Найти длину АВ (рис. 203). (3)

Задачи на свойство треугольника

Решение. Повернём треугольник АСМ вокруг точки С на 60°. Тогда точка А перейдёт в точку В, точка М – в некоторую точку D, треугольник АСМ – в треугольник BCD. При этом CD = СМ и ?MCD = 60°, следовательно, треугольник CDM – равносторонний, а значит, и ?CDM = ?DMC = 60°. С помощью поворота получен вспомогательный треугольник BDM. Заметим, что BD = AM = 1, ВМ = ?3, DM = CM = 2. Значит, треугольник BDM прямоугольный (ведь BM2+ BD2= (?3)2+ 12= DM2), ?DBM = 90° и ?BMD = 30° (противолежащий катет BD равен половине гипотенузы MD). Далее вычислим угол ВМС. ?ВМС = ?BMD + ?DMC = 30° + 60° = 90°. Применив теорему Пифагора к треугольнику ВСМ, найдём, что

Задачи на свойство треугольника

Задачи для самостоятельного решения

146. Доказать, что медиана треугольника меньше полусуммы заключающих ее сторон. (1)

147. Туристы находятся на острове «А». Им надо прибыть на остров «В», – при этом сначала побывав на обоих берегах реки. Каков будет их кратчайший маршрут (рис. 204)? (2)

Задачи на свойство треугольника

148. Средняя линия трапеции равна 4; отрезок, соединяющий середины оснований, равен 1; углы при основании трапеции равны 40° и 50°. Найдите длины оснований трапеции. (3)

2.10. Задачи, решаемые координатным и векторным методами

Вообще говоря, в данном случае речь идет не о частных идеях решения определенного класса задач, а об универсальных методах решения самых разнообразных геометрических проблем.

Суть метода состоит в том, что для решения задач вводится система координат (прямоугольная или аффинная), пишутся необходимые уравнения прямых, других фигур, по известным формулам находятся длины и углы.

Примеры решения задач

149. Даны точки А(-2; 1); В(1; 5); С(3; -2); D(6; 2). Является ли четырёхугольник ABCD параллелограммом? Ответ: обоснуйте. (1)

Решение. АВ = (3; 4); CD = (3; 4). Противоположные стороны четырёхугольника, таким образом, равны и параллельны. Значит, ABCD – параллелограмм.

Ответ: ABCD – параллелограмм.

150. В треугольнике ABC точка М – точка пересечения медиан. Выразите вектор AM через вектора АВ и АС (рис. 205). (2)

Задачи на свойство треугольника

Решение. Медианы точкой пересечения делятся в отношении 2:1, считая от вершины, поэтому

Задачи на свойство треугольника

Задачу можно решить проще, если достроить треугольник ABC до параллелограмма ABDC, тогда AM = 2/3 АК, но АК = 1/2 AD = 1/2 (АВ + АС). Отсюда сразу получаем, что AM = 1/3(АВ + АС).

151. В прямоугольнике ABCD точки М и N – середины сторон АВ и ВС. Точка О – точка пересечения AN и DM. Найдите AO/ON (рис. 206). (2)

Задачи на свойство треугольника

Решение. Решим задачу аналитическим путём. Пусть А(0; 0); D (a; 0); B(0; b), тогда M(0; b/2); N(a/2; b). Напишем уравнения прямых AN и MD.

Задачи на свойство треугольника

Точка О будет иметь координаты:

Задачи на свойство треугольникаЗадачи на свойство треугольника

152. ВМ: МС = 3:1, АК = КВ. Найдите: SAKO/SABC (рис. 207). (3)

Задачи на свойство треугольника

Решение. См. задачу 105 (с. 88). Тогда мы решили её, применив теорему о пропорциональных отрезках. Здесь мы применим векторный подход и метод неопределенных коэффициентов.

Пусть ВА = а, ВС = b, АО = х ? AM, КО = у ? КС, тогда АО + ОК = АК, х ? АМ + (-у ? КС) = -1/2а.

Так как AM = AB + ВМ = – ВА + 3/4ВС = – а + 3/4b и КС = KB + ВС = -1/2ВА + ВС = -1/2а + b, то с учётом этого получаем уравнение: хAM + (-уКС) = -1/2а или х(-а + 3/4b) – у(-1/2а + b) = -1/2а. Приравнивая к нулю коэффициенты при векторах а и b, стоящих в левой и правой частях уравнения, получим систему:

Задачи на свойство треугольника

Задачи на свойство треугольника

Задачи на свойство треугольника

153. В выпуклом четырёхугольнике ABCD диагонали АС и BD пересекаются в точке F. Известно, что AF = CF = 2, BF = 1, DF = 4, ?BFC = ?/3.

Найти косинус угла между векторами АВ и DC (рис. 208). (3)

Задачи на свойство треугольника

Пусть ? – искомый угол между векторами АВ и DC тогда

Задачи на свойство треугольника

Пользуясь свойствами скалярного произведения векторов и условиями задачи, вычислим АВ, DC и АВ ? DC. Так как

Задачи на свойство треугольника

Теперь получаем, что

Задачи на свойство треугольника

Задачи для самостоятельного решения

154. Найдите геометрическое место точек, равноудалённых от данной прямой и данной точки. (2)

155. Продолжения сторон AD и ВС четырёхугольника ABCD пересекаются в точке Р. Точки М и N – середины сторон АВ и CD. Доказать, что если прямая MN проходит через точку Р, то ABCD – трапеция. (3)

156. Дан равнобедренный треугольник ABC, в котором проведены высота CD и перпендикуляр DE к боковой стороне ВС. Точка M – середина отрезка DE. Доказать, что отрезки АЕ и СМ перпендикулярны. (3)

157. Доказать, что для треугольника ABC и любой точки Р выполняется неравенство:

Задачи на свойство треугольника

2.11. Разные задачи

158. Можно ли утверждать, что треугольники равны по двум сторонам и медиане, проведенной к одной из этих сторон? Ответ: обоснуйте (рис. 209). (1)

Задачи на свойство треугольника

Решение. Рассмотрим треугольники ABC и А1В1C1. Пусть AB = A1B1, BC = B1C1,AM = A1M1 (см. рис). Так как ВС = В1С1, то ВМ = В1М1 ?АВМ = ?A1B1M1 (по трём сторонам), значит, ?В = ?B1. В этом случае ?ABC = ?A1B1C1 по двум сторонам и углу между ними.

159. Определите острые углы прямоугольного треугольника, если медиана, проведённая к его гипотенузе, делит прямой угол в отношении 2:1 (рис. 210). (1)

Задачи на свойство треугольника

Решение. Нарисуем треугольник ABC, где ?ВАС = 3? = 90°. Медиана AD равна длинам BD и CD, так как D – середина гипотенузы, а, значит, является центром описанной около треугольника окружности. Пусть для определённости ?BAD = 2?, ?DAC =?. Очевидно, что 2? + ? = 90°, ? = 30°. Учитывая, что треугольники BDA и DAC – равнобедренные, получаем:?В = 2? = 60°, ?С = ? = 30°.

160. Дан произвольный четырёхугольник ABCD. Точки М, N, Р, Q – середины его сторон. Докажите, что MNPQ – параллелограмм (рис. 211). (1)

Задачи на свойство треугольника

Решение. Из условия задачи и чертежа видно, что MN – средняя средняя линия ?ABC и QP средняя линия ?ACD. Поэтому MN = 1/2АС и MN||AC; QP = 1/2АС и QP||АС. В итоге получаем, что MN = QP и MN||QP. Поэтому, по признаку параллелограмма четырёхугольник MNPQ – параллелограмм.

161. Диагонали АС и BD трапеции ABCD пересекаются в точке О. Докажите, что треугольник АОВ и COD имеют одинаковые площади (рис. 212). (2)

Задачи на свойство треугольника

Решение. Обозначим через h высоту трапеции. Запишем равенства:

Задачи на свойство треугольника

162. Стороны треугольника образуют арифметическую прогрессию. Доказать, что радиус окружности, вписанной в треугольник, равен 1/3 высоты, проведённой к средней по величине стороне треугольника. (3)

Решение. Пусть стороны а, b, с треугольника ABC образуют арифметическую прогрессию с разностью d. Будем считать, что а ? b ? с. тогда a = b – d, c = b + d, периметр Р = 2р = 3b.

Воспользуемся формулой r = S/P, получим r = 2S/3b. А так как S = 1/2bhb, то r = 1/3hb.

Задачи для самостоятельного решения

163. Диагонали трапеции делят её среднюю линию на три равные части. Как относятся основания этой трапеции? (1)

164. Докажите, что середины сторон равнобокой трапеции являются вершинами ромба. (1)

165. В параллелограмме, смежные стороны которого не равны, проведены биссектрисы четырех углов. Докажите, что при их пересечении образуется прямоугольник. (2)

166. Площадь четырёхугольника равна S. Найдите площадь параллелограмма, стороны которого равны и параллельны диагоналям четырёхугольника. (2)

167. Докажите, что в параллелограмме ABCD расстояния от любой точки диагонали АС до прямых ВС и CD обратно пропорциональны длинам этих сторон. (2)

168. В выпуклом четырёхугольнике длины диагоналей равны одному и двум метрам. Найти площадь четырёхугольника, зная, что длины отрезков, соединяющих середины его противоположных сторон, равны. (1)

🎦 Видео

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)Скачать

Геометрия 7 класс (Урок№25 - Прямоугольные треугольники.)

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)Скачать

Геометрия 7 класс (Урок№15 - Решение задач на признаки равенства треугольников.)

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Свойства прямоугольного треугольника. Практическая часть. 7 класс.Скачать

Свойства прямоугольного треугольника. Практическая часть.  7 класс.

Угол между диагоналями куба. Метод координат и векторов. Задачи на даче-15.Скачать

Угол между диагоналями куба. Метод координат и векторов. Задачи на даче-15.

Свойства прямоугольного треугольника. 7 класс.Скачать

Свойства прямоугольного треугольника. 7 класс.

Средняя линия треугольника и трапеции. 8 класс.Скачать

Средняя линия треугольника и трапеции. 8 класс.

Секретная формула биссектрисы треугольника плюс Задача из экзамена 9 классСкачать

Секретная формула биссектрисы треугольника плюс Задача из экзамена 9 класс

7 класс, 15 урок, Первый признак равенства треугольниковСкачать

7 класс, 15 урок, Первый признак равенства треугольников

ГЕОМЕТРИЯ 8 класс. Свойство медиан треугольникаСкачать

ГЕОМЕТРИЯ 8 класс. Свойство медиан треугольника

Свойства равнобедренного треугольника. 7 класс.Скачать

Свойства равнобедренного треугольника. 7 класс.

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

Треугольники. Практическая часть - решение задачи. 7 класс.Скачать

Треугольники. Практическая часть - решение задачи. 7 класс.

7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

7 класс, 35 урок, Некоторые свойства прямоугольных треугольников
Поделиться или сохранить к себе: